Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 162525 by mathlove last updated on 30/Dec/21

∫_0 ^∞ ((√x)/((x^2 +4x+4)))=?

0x(x2+4x+4)=?

Answered by Ar Brandon last updated on 24/Mar/22

I=∫_0 ^∞ ((√x)/(x^2 +4x+4))dx, x=t^2 ⇒dx=2tdt     =2∫_0 ^∞ (t^2 /(t^4 +4t^2 +4))dt=2∫_0 ^∞ (t^2 /((t^2 +2)^2 ))dt=∫_(−∞) ^(+∞) (t^2 /((t^2 +2)^2 ))dt  ϕ(z)=(z^2 /((z^2 +2)^2 )), poles: z_1 =−i(√2) , z_2 =i(√2)  I=2iπRes(ϕ, z_2 )  Res (ϕ, z_2 )=lim_(z→z_2 ) (d/dz){(z^2 /((z−z_1 )^2 ))}=lim_(z→z_2 ) {((2z(z−z_1 )^2 −2z^2 (z−z_1 ))/((z−z_1 )^4 ))}  =((2z_2 (z_2 −z_1 )^2 −2z_2 ^2 (z_2 −z_1 ))/((z_2 −z_1 )^4 ))=((2(√2)i(2(√2)i)^2 −2(i(√2))^2 (2(√2)i))/(64))  =((−16(√2)i+8(√2)i)/(64))=−((√2)/8)i⇒I=2iπ(−((√2)/8)i)=(π/( 2(√2)))

I=0xx2+4x+4dx,x=t2dx=2tdt=20t2t4+4t2+4dt=20t2(t2+2)2dt=+t2(t2+2)2dtφ(z)=z2(z2+2)2,poles:z1=i2,z2=i2I=2iπRes(φ,z2)Res(φ,z2)=limzz2ddz{z2(zz1)2}=limzz2{2z(zz1)22z2(zz1)(zz1)4}=2z2(z2z1)22z22(z2z1)(z2z1)4=22i(22i)22(i2)2(22i)64=162i+82i64=28iI=2iπ(28i)=π22

Answered by cortano last updated on 30/Dec/21

 ∫_0 ^( ∞)  ((√x)/(x^2 +4x+4)) dx= ∫_0 ^( ∞)  ((2u^2 )/(u^4 +4u^2 +4)) du    [ u=(√x) ]    = ∫_0 ^( ∞)  ((2u^2 )/((u^2 +2)^2 )) du = −(u/(u^2 +2 )) ∣_0 ^∞  +∫ (du/(u^2 +2))   = 0 + (1/( (√2)))[ tan^(−1) ((u/( (√2))))]_0 ^∞ = (π/(2(√2))) = ((π(√2))/4)

0xx2+4x+4dx=02u2u4+4u2+4du[u=x]=02u2(u2+2)2du=uu2+20+duu2+2=0+12[tan1(u2)]0=π22=π24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com