Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 162575 by Ar Brandon last updated on 30/Dec/21

∫_0 ^π (x^2 /(1+sinx))dx

$$\int_{\mathrm{0}} ^{\pi} \frac{{x}^{\mathrm{2}} }{\mathrm{1}+\mathrm{sin}{x}}{dx} \\ $$

Answered by phanphuoc last updated on 30/Dec/21

you can put x=pi−t

$${you}\:{can}\:{put}\:{x}={pi}−{t} \\ $$

Answered by mindispower last updated on 30/Dec/21

du=(1/(1+sin(x)))⇒u=((2sin((x/2)))/(sin((x/2))+cos((x/2))))  IBP⇒2π^2 −4∫_0 ^π ((sin((x/2)))/(cos((x/2))+sin((x/2))))xdx  ∫_0 ^π ((sin((x/2)))/(cos((x/2))+sin((x/2))))xdx=4∫_0 ^(π/2) ((sin(y))/(sin(y)+cos(y)))ydy  =2∫_0 ^(π/2) ydy−2∫_0 ^(π/2) ((cos(y)−sin(y))/(sin(y)+cos(y)))ydy  =(π^2 /4)+2∫_0 ^(π/2) ln(sin(y)+cos(y))dy  (π^2 /4)+2∫_0 ^(π/2) ln((√2))+ln(sin(y+(π/4)))dy  =(π^2 /4)+πln((√2))+2∫_0 ^(π/4) ln(sin(y+(π/4)))dy+2∫_(π/4) ^(π/2) ln(sin(y+(π/4)))dy  =(π/2)((π/2)+ln(2))+2∫_0 ^(π/4) ln(cos(y))dy+2∫_0 ^(π/4) ln(cos(y))dy  ∫_0 ^(π/4) ln(cos(x))dx=(1/4)(2G−𝛑ln(2))  2G−π((ln(2))/2)+(π^2 /4)  ∫_0 ^π ((x^2 dx)/(1+sin(x)))=2π^2 −4(2G−((πln(2))/2)+(π^2 /4))  =π^2 +2πln(2)−8G

$${du}=\frac{\mathrm{1}}{\mathrm{1}+{sin}\left({x}\right)}\Rightarrow{u}=\frac{\mathrm{2}{sin}\left(\frac{{x}}{\mathrm{2}}\right)}{{sin}\left(\frac{{x}}{\mathrm{2}}\right)+{cos}\left(\frac{{x}}{\mathrm{2}}\right)} \\ $$$${IBP}\Rightarrow\mathrm{2}\pi^{\mathrm{2}} −\mathrm{4}\int_{\mathrm{0}} ^{\pi} \frac{{sin}\left(\frac{{x}}{\mathrm{2}}\right)}{{cos}\left(\frac{{x}}{\mathrm{2}}\right)+\mathrm{sin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)}\mathrm{xdx} \\ $$$$\int_{\mathrm{0}} ^{\pi} \frac{{sin}\left(\frac{{x}}{\mathrm{2}}\right)}{{cos}\left(\frac{{x}}{\mathrm{2}}\right)+{sin}\left(\frac{{x}}{\mathrm{2}}\right)}{xdx}=\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}\left({y}\right)}{{sin}\left({y}\right)+{cos}\left({y}\right)}{ydy} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ydy}−\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{cos}\left({y}\right)−{sin}\left({y}\right)}{{sin}\left({y}\right)+{cos}\left({y}\right)}{ydy} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{4}}+\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({y}\right)+{cos}\left({y}\right)\right){dy} \\ $$$$\frac{\pi^{\mathrm{2}} }{\mathrm{4}}+\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\sqrt{\mathrm{2}}\right)+{ln}\left({sin}\left({y}+\frac{\pi}{\mathrm{4}}\right)\right){dy} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{4}}+\pi{ln}\left(\sqrt{\mathrm{2}}\right)+\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({sin}\left({y}+\frac{\pi}{\mathrm{4}}\right)\right){dy}+\mathrm{2}\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({y}+\frac{\pi}{\mathrm{4}}\right)\right){dy} \\ $$$$=\frac{\pi}{\mathrm{2}}\left(\frac{\pi}{\mathrm{2}}+{ln}\left(\mathrm{2}\right)\right)+\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\left({y}\right)\right){dy}+\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\left({y}\right)\right){dy} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\left({x}\right)\right){dx}=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{2}{G}−\boldsymbol{\pi}{ln}\left(\mathrm{2}\right)\right) \\ $$$$\mathrm{2}{G}−\pi\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}}+\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\int_{\mathrm{0}} ^{\pi} \frac{{x}^{\mathrm{2}} {dx}}{\mathrm{1}+{sin}\left({x}\right)}=\mathrm{2}\pi^{\mathrm{2}} −\mathrm{4}\left(\mathrm{2}{G}−\frac{\pi{ln}\left(\mathrm{2}\right)}{\mathrm{2}}+\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\right) \\ $$$$=\pi^{\mathrm{2}} +\mathrm{2}\pi{ln}\left(\mathrm{2}\right)−\mathrm{8}{G} \\ $$

Commented by Ar Brandon last updated on 30/Dec/21

Cool ! Merci, grand.

$$\mathrm{Cool}\:!\:\mathrm{Merci},\:\mathrm{grand}. \\ $$

Commented by mindispower last updated on 31/Dec/21

Avec plaisir Bonne journee

$${Avec}\:{plaisir}\:{Bonne}\:{journee} \\ $$

Commented by Ar Brandon last updated on 31/Dec/21

Meilleure a^�  vous !

$$\mathrm{Meilleure}\:\grave {\mathrm{a}}\:\mathrm{vous}\:! \\ $$

Commented by mindispower last updated on 31/Dec/21

tu vas faire MP maths spe?

$${tu}\:{vas}\:{faire}\:{MP}\:{maths}\:{spe}? \\ $$

Commented by Ar Brandon last updated on 31/Dec/21

Non, je n′ai pas penser a^�  le faire.  Je suis en 1^(er)  anne^� e IUT actuellement.  Et vous ?

$$\mathrm{Non},\:\mathrm{je}\:\mathrm{n}'\mathrm{ai}\:\mathrm{pas}\:\mathrm{penser}\:\grave {\mathrm{a}}\:\mathrm{le}\:\mathrm{faire}. \\ $$$$\mathrm{Je}\:\mathrm{suis}\:\mathrm{en}\:\mathrm{1}^{\mathrm{er}} \:\mathrm{ann}\acute {\mathrm{e}e}\:\mathrm{IUT}\:\mathrm{actuellement}. \\ $$$$\mathrm{Et}\:\mathrm{vous}\:? \\ $$

Commented by mindispower last updated on 31/Dec/21

je suis en M2 Maths fondamental (Topologie Algebrique)  Bonne Continuation

$${je}\:{suis}\:{en}\:{M}\mathrm{2}\:{Maths}\:{fondamental}\:\left({Topologie}\:{Algebrique}\right) \\ $$$${Bonne}\:{Continuation} \\ $$

Commented by mindispower last updated on 01/Jan/22

bonjour je vais faire un compte  pour echanger pas de soucis

$${bonjour}\:{je}\:{vais}\:{faire}\:{un}\:{compte} \\ $$$${pour}\:{echanger}\:{pas}\:{de}\:{soucis} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com