All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 162775 by john_santu last updated on 01/Jan/22
limx→0asin3x−bsin2xx3=12Findaandb.
Answered by mr W last updated on 01/Jan/22
=limx→0a(3x−27x36+o(x3))−b(2x−8x36+o(x3))x3=limx→0(3a−2b)x−(27a−8b)x36+o(x3)x3=12⇒3a−2b=0⇒−27a−8b6=12⇒a=−15,b=−310
Answered by bobhans last updated on 01/Jan/22
limx→0asin3x−3ax+3ax−2bx+2bx−bsin2xx3=12limx→0a(sin3x−3x)+x(3a−2b)+b(2x−sin2x)x3=12[3a=2b]limx→027a(sin3x−3x)(3x)3+limx→08b(2x−sin2x)(2x)3=12−27a6+8b6=12⇒8b−27a=3⇒4(3a)−27a=3→{−15a=3;a=−15b=−310
Terms of Service
Privacy Policy
Contact: info@tinkutara.com