Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 162775 by john_santu last updated on 01/Jan/22

   lim_(x→0)  ((a sin 3x − b sin 2x )/x^3 ) = (1/2)   Find a and b .

limx0asin3xbsin2xx3=12Findaandb.

Answered by mr W last updated on 01/Jan/22

=lim_(x→0) ((a(3x−((27x^3 )/6)+o(x^3 ))−b(2x−((8x^3 )/6)+o(x^3 )))/x^3 )  =lim_(x→0) (((3a−2b)x−(((27a−8b)x^3 )/6)+o(x^3 ))/x^3 )=(1/2)  ⇒3a−2b=0  ⇒−((27a−8b)/6)=(1/2)  ⇒a=−(1/5), b=−(3/(10))

=limx0a(3x27x36+o(x3))b(2x8x36+o(x3))x3=limx0(3a2b)x(27a8b)x36+o(x3)x3=123a2b=027a8b6=12a=15,b=310

Answered by bobhans last updated on 01/Jan/22

  lim_(x→0)  ((a sin 3x−3ax+3ax−2bx+2bx−b sin 2x)/x^3 ) = (1/2)   lim_(x→0)  ((a(sin 3x−3x)+x(3a−2b)+b(2x−sin 2x))/x^3 ) =(1/2)   [ 3a=2b ]    lim_(x→0)  ((27a(sin 3x−3x))/((3x)^3 ))+lim_(x→0)  ((8b(2x−sin 2x))/((2x)^3 )) = (1/2)   −((27a)/6) +((8b)/6) = (1/2) ⇒8b−27a=3  ⇒ 4(3a)−27a = 3 → { ((−15a=3 ; a=−(1/5))),((b=−(3/(10)))) :}

limx0asin3x3ax+3ax2bx+2bxbsin2xx3=12limx0a(sin3x3x)+x(3a2b)+b(2xsin2x)x3=12[3a=2b]limx027a(sin3x3x)(3x)3+limx08b(2xsin2x)(2x)3=1227a6+8b6=128b27a=34(3a)27a=3{15a=3;a=15b=310

Terms of Service

Privacy Policy

Contact: info@tinkutara.com