Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 162811 by mnjuly1970 last updated on 01/Jan/22

       I = ∫_0 ^( ∞) (( tan^( −1)  (x ))/(( 1+x^( 2)  )^( 2) )) dx = ?        −−−−−−−−−−

$$ \\ $$$$\:\:\:\:\:\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{tan}^{\:−\mathrm{1}} \:\left({x}\:\right)}{\left(\:\mathrm{1}+{x}^{\:\mathrm{2}} \:\right)^{\:\mathrm{2}} }\:{dx}\:=\:? \\ $$$$\:\:\:\:\:\:−−−−−−−−−− \\ $$

Answered by amin96 last updated on 01/Jan/22

  arctg(x)=t    x=tg(t)    (dt/dx)=(1/(x^2 +1))    t[(π/2):0]  I=∫_0 ^(π/2) (t/((1+x^2 )))dt=∫_0 ^(π/2) (t/(1+tg^2 (t)))dt=∫_0 ^(π/2) tcos^2 (t)dt  IBP t=u    du=dt    v=((2t+sin(2t))/4)  I=[t((t/2)+((sin(2t))/4))]_0 ^(π/2) −∫_0 ^(π/2) ((t/2)+((sin(2t))/4))dt=  =(π^2 /8)−[(t^2 /4)]_0 ^(π/2) −(1/4)∫_0 ^(π/2) sin(2t)dt_(1) =(π^2 /8)−(π^2 /(16))−(1/4)=  =(π^2 /(16))−(1/4)

$$ \\ $$$$\boldsymbol{{arctg}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{t}}\:\:\:\:\boldsymbol{\mathrm{x}}=\boldsymbol{\mathrm{tg}}\left(\boldsymbol{\mathrm{t}}\right)\:\:\:\:\frac{\boldsymbol{{dt}}}{\boldsymbol{{dx}}}=\frac{\mathrm{1}}{\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{1}}\:\:\:\:{t}\left[\frac{\pi}{\mathrm{2}}:\mathrm{0}\right] \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\boldsymbol{{t}}}{\left(\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} \right)}\boldsymbol{{dt}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\boldsymbol{\mathrm{t}}}{\mathrm{1}+\boldsymbol{\mathrm{tg}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{t}}\right)}\boldsymbol{\mathrm{dt}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \boldsymbol{{tcos}}^{\mathrm{2}} \left(\boldsymbol{{t}}\right)\boldsymbol{{dt}} \\ $$$$\boldsymbol{\mathrm{IBP}}\:\boldsymbol{{t}}=\boldsymbol{{u}}\:\:\:\:\boldsymbol{{du}}=\boldsymbol{{dt}}\:\:\:\:\boldsymbol{{v}}=\frac{\mathrm{2}\boldsymbol{{t}}+\boldsymbol{{sin}}\left(\mathrm{2}\boldsymbol{{t}}\right)}{\mathrm{4}} \\ $$$$\boldsymbol{{I}}=\left[\boldsymbol{{t}}\left(\frac{\boldsymbol{{t}}}{\mathrm{2}}+\frac{\boldsymbol{{sin}}\left(\mathrm{2}\boldsymbol{{t}}\right)}{\mathrm{4}}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\boldsymbol{{t}}}{\mathrm{2}}+\frac{\boldsymbol{{sin}}\left(\mathrm{2}\boldsymbol{{t}}\right)}{\mathrm{4}}\right)\boldsymbol{{dt}}= \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\left[\frac{\boldsymbol{{t}}^{\mathrm{2}} }{\mathrm{4}}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{1}} {\underbrace{\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \boldsymbol{{sin}}\left(\mathrm{2}\boldsymbol{{t}}\right)\boldsymbol{{dt}}}}=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\frac{\pi^{\mathrm{2}} }{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{4}}= \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 01/Jan/22

    yes  sir? amin  .thank you so much

$$\:\:\:\:{yes}\:\:{sir}?\:{amin}\:\:.{thank}\:{you}\:{so}\:{much} \\ $$

Commented by amin96 last updated on 01/Jan/22

  Thanks for the good questions too. I'm your follower👍 sir MN

$$ \\ $$Thanks for the good questions too. I'm your follower👍 sir MN

Commented by mnjuly1970 last updated on 01/Jan/22

    that,s my pleasure sir amin .      thank you very much..

$$\:\:\:\:{that},{s}\:{my}\:{pleasure}\:{sir}\:{amin}\:. \\ $$$$\:\:\:\:{thank}\:{you}\:{very}\:{much}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com