Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 162860 by Mathematification last updated on 01/Jan/22

Answered by MJS_new last updated on 01/Jan/22

f(x)=x^4 −18x^2 −x+83  g(x)=c_1 x+c_0   h(x)=f(x)−g(x)=x^4 −18x^2 −(c_1 +1)x+(83−c_0 )  we know h(x) must have 2 minima m_1 , m_2   and 1 maximum at x=((m_1 +m_2 )/2)  ⇒  h′(x)=C(x−m_1 )(x−m_2 )(x−((m_1 +m_2 )/2))=0  ⇔  x^3 −((3(m_1 +m_2 ))/2)x^2 +((m_1 ^2 +4m_1 m_2 +m_2 ^3 )/2)x−((m_1 (m_1 +m_2 )m_2 )/2)=0  but  h′(x)=4x^3 −36x−(c_1 +1)  ⇒  x^3 −9x−((c_1 +1)/4)=0  ⇒  −((3(m_1 +m_2 ))/2)=0 ⇒ m_2 =−m_1   ⇒  h(x)=x^3 −m_1 ^2 x=0 ⇒ m_1 =±3∧c_1 =−1  ⇒ g(x) touches f(x) at x=±3  now we easily get the tangent  g(x)=−x+2

$${f}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{18}{x}^{\mathrm{2}} −{x}+\mathrm{83} \\ $$$${g}\left({x}\right)={c}_{\mathrm{1}} {x}+{c}_{\mathrm{0}} \\ $$$${h}\left({x}\right)={f}\left({x}\right)−{g}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{18}{x}^{\mathrm{2}} −\left({c}_{\mathrm{1}} +\mathrm{1}\right){x}+\left(\mathrm{83}−{c}_{\mathrm{0}} \right) \\ $$$$\mathrm{we}\:\mathrm{know}\:{h}\left({x}\right)\:\mathrm{must}\:\mathrm{have}\:\mathrm{2}\:\mathrm{minima}\:{m}_{\mathrm{1}} ,\:{m}_{\mathrm{2}} \\ $$$$\mathrm{and}\:\mathrm{1}\:\mathrm{maximum}\:\mathrm{at}\:{x}=\frac{{m}_{\mathrm{1}} +{m}_{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$${h}'\left({x}\right)={C}\left({x}−{m}_{\mathrm{1}} \right)\left({x}−{m}_{\mathrm{2}} \right)\left({x}−\frac{{m}_{\mathrm{1}} +{m}_{\mathrm{2}} }{\mathrm{2}}\right)=\mathrm{0} \\ $$$$\Leftrightarrow \\ $$$${x}^{\mathrm{3}} −\frac{\mathrm{3}\left({m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right)}{\mathrm{2}}{x}^{\mathrm{2}} +\frac{{m}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{4}{m}_{\mathrm{1}} {m}_{\mathrm{2}} +{m}_{\mathrm{2}} ^{\mathrm{3}} }{\mathrm{2}}{x}−\frac{{m}_{\mathrm{1}} \left({m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right){m}_{\mathrm{2}} }{\mathrm{2}}=\mathrm{0} \\ $$$$\mathrm{but} \\ $$$${h}'\left({x}\right)=\mathrm{4}{x}^{\mathrm{3}} −\mathrm{36}{x}−\left({c}_{\mathrm{1}} +\mathrm{1}\right) \\ $$$$\Rightarrow \\ $$$${x}^{\mathrm{3}} −\mathrm{9}{x}−\frac{{c}_{\mathrm{1}} +\mathrm{1}}{\mathrm{4}}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$−\frac{\mathrm{3}\left({m}_{\mathrm{1}} +{m}_{\mathrm{2}} \right)}{\mathrm{2}}=\mathrm{0}\:\Rightarrow\:{m}_{\mathrm{2}} =−{m}_{\mathrm{1}} \\ $$$$\Rightarrow \\ $$$${h}\left({x}\right)={x}^{\mathrm{3}} −{m}_{\mathrm{1}} ^{\mathrm{2}} {x}=\mathrm{0}\:\Rightarrow\:{m}_{\mathrm{1}} =\pm\mathrm{3}\wedge{c}_{\mathrm{1}} =−\mathrm{1} \\ $$$$\Rightarrow\:{g}\left({x}\right)\:\mathrm{touches}\:{f}\left({x}\right)\:\mathrm{at}\:{x}=\pm\mathrm{3} \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{easily}\:\mathrm{get}\:\mathrm{the}\:\mathrm{tangent} \\ $$$${g}\left({x}\right)=−{x}+\mathrm{2} \\ $$

Commented by Tawa11 last updated on 02/Jan/22

Great sir.

$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Answered by mr W last updated on 02/Jan/22

curve: y=f(x)=x^4 −18x^2 −x+83  say the tangent line is y=g(x)=ax+b  the difference of them,say h(x), with  h(x)=x^4 −18x^2 −(1+a)x+(83−b)  must be a curve like this:

$${curve}:\:{y}={f}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{18}{x}^{\mathrm{2}} −{x}+\mathrm{83} \\ $$$${say}\:{the}\:{tangent}\:{line}\:{is}\:{y}={g}\left({x}\right)={ax}+{b} \\ $$$${the}\:{difference}\:{of}\:{them},{say}\:{h}\left({x}\right),\:{with} \\ $$$${h}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{18}{x}^{\mathrm{2}} −\left(\mathrm{1}+{a}\right){x}+\left(\mathrm{83}−{b}\right) \\ $$$${must}\:{be}\:{a}\:{curve}\:{like}\:{this}: \\ $$

Commented by mr W last updated on 02/Jan/22

Commented by mr W last updated on 02/Jan/22

let′s have a close look at it.  the curve has two zeros, say p and q.  at these two points the curve tangents  also the x−axis. that means at these  two points the curve has minimum  which is also zero.  we can assume then  h(x)=(x−p)(x−q)(x^2 +ux+v)  h′(x)=(x−p)(x−q)(2x+u)+(2x−p−q)(x^2 +ux+v)  we have  h′(p)=(p−q)(p^2 +up+v)=0   ⇒p^2 +up+v=0  h′(q)=(q−p)(q^2 +uq+v)=0   ⇒q^2 +uq+v=0  that means p, q are also roots of  x^2 +ux+v=0, i.e.  x^2 +ux+v=(x−p)(x−q).  therefore  h(x)=(x−p)(x−q)(x^2 +ux+v)  ⇒h(x)=(x−p)^2 (x−q)^2   h′(x)=4(x−p)(x−q)(x−((p+q)/2))  that means h′(x)=0 at x=r=((p+q)/2).  this is the point where the curve h(x)  has local maximum.    using these knowledges:  h(x)=x^4 −18x^2 −(1+a)x+(83−b)  h′(x)=4(x^3 −9x−((1+a)/4))=0  (x^3 −9x−((1+a)/4))=(x−p)(x−q)(x−((p+q)/2))  p+q+((p+q)/2)=0 ⇒p+q=0  pq+(p+q)((p+q)/2)=−9 ⇒pq=−9  ((pq(p+q))/2)=((1+a)/4) ⇒a=−1  ⇒p=3, q=−3  h(3)=h(−3)=0  ⇒3^4 −18×3^2 +83−b=0 ⇒b=2    ⇒the tangent line is y=−x+2    alternative way:  we know that h(x) should be of the  form h(x)=(x−p)^2 (x−q)^2 . that  meams if it has no x^3  term, then it  should also have no x term,   i.e. 1+a=0, or a=−1.  h(x)=x^4 −18x^2 +(83−b)=^(!) (x^2 −9^2 )^2   83−b=9^2  ⇒b=2

$${let}'{s}\:{have}\:{a}\:{close}\:{look}\:{at}\:{it}. \\ $$$${the}\:{curve}\:{has}\:{two}\:{zeros},\:{say}\:{p}\:{and}\:{q}. \\ $$$${at}\:{these}\:{two}\:{points}\:{the}\:{curve}\:{tangents} \\ $$$${also}\:{the}\:{x}−{axis}.\:{that}\:{means}\:{at}\:{these} \\ $$$${two}\:{points}\:{the}\:{curve}\:{has}\:{minimum} \\ $$$${which}\:{is}\:{also}\:{zero}. \\ $$$${we}\:{can}\:{assume}\:{then} \\ $$$${h}\left({x}\right)=\left({x}−{p}\right)\left({x}−{q}\right)\left({x}^{\mathrm{2}} +{ux}+{v}\right) \\ $$$${h}'\left({x}\right)=\left({x}−{p}\right)\left({x}−{q}\right)\left(\mathrm{2}{x}+{u}\right)+\left(\mathrm{2}{x}−{p}−{q}\right)\left({x}^{\mathrm{2}} +{ux}+{v}\right) \\ $$$${we}\:{have} \\ $$$${h}'\left({p}\right)=\left({p}−{q}\right)\left({p}^{\mathrm{2}} +{up}+{v}\right)=\mathrm{0}\: \\ $$$$\Rightarrow{p}^{\mathrm{2}} +{up}+{v}=\mathrm{0} \\ $$$${h}'\left({q}\right)=\left({q}−{p}\right)\left({q}^{\mathrm{2}} +{uq}+{v}\right)=\mathrm{0}\: \\ $$$$\Rightarrow{q}^{\mathrm{2}} +{uq}+{v}=\mathrm{0} \\ $$$${that}\:{means}\:{p},\:{q}\:{are}\:{also}\:{roots}\:{of} \\ $$$${x}^{\mathrm{2}} +{ux}+{v}=\mathrm{0},\:{i}.{e}. \\ $$$${x}^{\mathrm{2}} +{ux}+{v}=\left({x}−{p}\right)\left({x}−{q}\right). \\ $$$${therefore} \\ $$$${h}\left({x}\right)=\left({x}−{p}\right)\left({x}−{q}\right)\left({x}^{\mathrm{2}} +{ux}+{v}\right) \\ $$$$\Rightarrow{h}\left({x}\right)=\left({x}−{p}\right)^{\mathrm{2}} \left({x}−{q}\right)^{\mathrm{2}} \\ $$$${h}'\left({x}\right)=\mathrm{4}\left({x}−{p}\right)\left({x}−{q}\right)\left({x}−\frac{{p}+{q}}{\mathrm{2}}\right) \\ $$$${that}\:{means}\:{h}'\left({x}\right)=\mathrm{0}\:{at}\:{x}={r}=\frac{{p}+{q}}{\mathrm{2}}. \\ $$$${this}\:{is}\:{the}\:{point}\:{where}\:{the}\:{curve}\:{h}\left({x}\right) \\ $$$${has}\:{local}\:{maximum}. \\ $$$$ \\ $$$${using}\:{these}\:{knowledges}: \\ $$$${h}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{18}{x}^{\mathrm{2}} −\left(\mathrm{1}+{a}\right){x}+\left(\mathrm{83}−{b}\right) \\ $$$${h}'\left({x}\right)=\mathrm{4}\left({x}^{\mathrm{3}} −\mathrm{9}{x}−\frac{\mathrm{1}+{a}}{\mathrm{4}}\right)=\mathrm{0} \\ $$$$\left({x}^{\mathrm{3}} −\mathrm{9}{x}−\frac{\mathrm{1}+{a}}{\mathrm{4}}\right)=\left({x}−{p}\right)\left({x}−{q}\right)\left({x}−\frac{{p}+{q}}{\mathrm{2}}\right) \\ $$$${p}+{q}+\frac{{p}+{q}}{\mathrm{2}}=\mathrm{0}\:\Rightarrow{p}+{q}=\mathrm{0} \\ $$$${pq}+\left({p}+{q}\right)\frac{{p}+{q}}{\mathrm{2}}=−\mathrm{9}\:\Rightarrow{pq}=−\mathrm{9} \\ $$$$\frac{{pq}\left({p}+{q}\right)}{\mathrm{2}}=\frac{\mathrm{1}+{a}}{\mathrm{4}}\:\Rightarrow{a}=−\mathrm{1} \\ $$$$\Rightarrow{p}=\mathrm{3},\:{q}=−\mathrm{3} \\ $$$${h}\left(\mathrm{3}\right)={h}\left(−\mathrm{3}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{3}^{\mathrm{4}} −\mathrm{18}×\mathrm{3}^{\mathrm{2}} +\mathrm{83}−{b}=\mathrm{0}\:\Rightarrow{b}=\mathrm{2} \\ $$$$ \\ $$$$\Rightarrow{the}\:{tangent}\:{line}\:{is}\:{y}=−{x}+\mathrm{2} \\ $$$$ \\ $$$${alternative}\:{way}: \\ $$$${we}\:{know}\:{that}\:{h}\left({x}\right)\:{should}\:{be}\:{of}\:{the} \\ $$$${form}\:{h}\left({x}\right)=\left({x}−{p}\right)^{\mathrm{2}} \left({x}−{q}\right)^{\mathrm{2}} .\:{that} \\ $$$${meams}\:{if}\:{it}\:{has}\:{no}\:{x}^{\mathrm{3}} \:{term},\:{then}\:{it} \\ $$$${should}\:{also}\:{have}\:{no}\:{x}\:{term},\: \\ $$$${i}.{e}.\:\mathrm{1}+{a}=\mathrm{0},\:{or}\:{a}=−\mathrm{1}. \\ $$$${h}\left({x}\right)={x}^{\mathrm{4}} −\mathrm{18}{x}^{\mathrm{2}} +\left(\mathrm{83}−{b}\right)\overset{!} {=}\left({x}^{\mathrm{2}} −\mathrm{9}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\mathrm{83}−{b}=\mathrm{9}^{\mathrm{2}} \:\Rightarrow{b}=\mathrm{2} \\ $$

Commented by mr W last updated on 02/Jan/22

Commented by mr W last updated on 02/Jan/22

basically it′s the same solution as  that from MJS sir, i just put some   more explanation.

$${basically}\:{it}'{s}\:{the}\:{same}\:{solution}\:{as} \\ $$$${that}\:{from}\:{MJS}\:{sir},\:{i}\:{just}\:{put}\:{some}\: \\ $$$${more}\:{explanation}. \\ $$

Commented by Tawa11 last updated on 02/Jan/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com