Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 162866 by HongKing last updated on 01/Jan/22

Answered by aleks041103 last updated on 02/Jan/22

 determinant ((1,k,k),((2n),(k^2 +k+1),(k^2 +k)),((2n−1),k^2 ,(k^2 +k+1)))=  =1. determinant (((k^2 +k+1),(k^2 +k)),(k^2 ,(k^2 +k+1)))−2n determinant ((k,k),(k^2 ,(k^2 +k+1)))+(2n−1) determinant ((k,k),((k^2 +k+1),(k^2 +k)))=   determinant (((k^2 +k+1),(k^2 +k)),(k^2 ,(k^2 +k+1)))=(k^2 +k+1)^2 −k^2 (k^2 +k)=  =k^4 +k^2 +1+2k^2 +2k^3 +2k−k^4 −k^3 =  =k^3 +3k^2 +2k+1   determinant ((k,k),(k^2 ,(k^2 +k+1)))=k(k^2 +k+1)−k^3 =k^2 +k   determinant ((k,k),((k^2 +k+1),(k^2 +k)))=k(k^2 +k)−k(k^2 +k+1)=  =k(k^2 +k−k^2 −k−1)=−k  ⇒U_n =k^3 +3k^2 +2k+1−2n(k^2 +k)−(2n−1)k=  ⇒Σ_(n=1) ^k U_n =k(k^3 +3k^2 +2k+1)−k^2 (k+1)^2 +k−k^2 (k+1)=  =k^4 +3k^3 +2k^2 +k−(k^4 +2k^3 +k^2 )+k−k^3 −k^2 =  =k^3 +k^2 +2k−k^3 −k^2 =2k  ⇒2k=72⇒k=36

$$\begin{vmatrix}{\mathrm{1}}&{{k}}&{{k}}\\{\mathrm{2}{n}}&{{k}^{\mathrm{2}} +{k}+\mathrm{1}}&{{k}^{\mathrm{2}} +{k}}\\{\mathrm{2}{n}−\mathrm{1}}&{{k}^{\mathrm{2}} }&{{k}^{\mathrm{2}} +{k}+\mathrm{1}}\end{vmatrix}= \\ $$$$=\mathrm{1}.\begin{vmatrix}{{k}^{\mathrm{2}} +{k}+\mathrm{1}}&{{k}^{\mathrm{2}} +{k}}\\{{k}^{\mathrm{2}} }&{{k}^{\mathrm{2}} +{k}+\mathrm{1}}\end{vmatrix}−\mathrm{2}{n}\begin{vmatrix}{{k}}&{{k}}\\{{k}^{\mathrm{2}} }&{{k}^{\mathrm{2}} +{k}+\mathrm{1}}\end{vmatrix}+\left(\mathrm{2}{n}−\mathrm{1}\right)\begin{vmatrix}{{k}}&{{k}}\\{{k}^{\mathrm{2}} +{k}+\mathrm{1}}&{{k}^{\mathrm{2}} +{k}}\end{vmatrix}= \\ $$$$\begin{vmatrix}{{k}^{\mathrm{2}} +{k}+\mathrm{1}}&{{k}^{\mathrm{2}} +{k}}\\{{k}^{\mathrm{2}} }&{{k}^{\mathrm{2}} +{k}+\mathrm{1}}\end{vmatrix}=\left({k}^{\mathrm{2}} +{k}+\mathrm{1}\right)^{\mathrm{2}} −{k}^{\mathrm{2}} \left({k}^{\mathrm{2}} +{k}\right)= \\ $$$$={k}^{\mathrm{4}} +{k}^{\mathrm{2}} +\mathrm{1}+\mathrm{2}{k}^{\mathrm{2}} +\mathrm{2}{k}^{\mathrm{3}} +\mathrm{2}{k}−{k}^{\mathrm{4}} −{k}^{\mathrm{3}} = \\ $$$$={k}^{\mathrm{3}} +\mathrm{3}{k}^{\mathrm{2}} +\mathrm{2}{k}+\mathrm{1} \\ $$$$\begin{vmatrix}{{k}}&{{k}}\\{{k}^{\mathrm{2}} }&{{k}^{\mathrm{2}} +{k}+\mathrm{1}}\end{vmatrix}={k}\left({k}^{\mathrm{2}} +{k}+\mathrm{1}\right)−{k}^{\mathrm{3}} ={k}^{\mathrm{2}} +{k} \\ $$$$\begin{vmatrix}{{k}}&{{k}}\\{{k}^{\mathrm{2}} +{k}+\mathrm{1}}&{{k}^{\mathrm{2}} +{k}}\end{vmatrix}={k}\left({k}^{\mathrm{2}} +{k}\right)−{k}\left({k}^{\mathrm{2}} +{k}+\mathrm{1}\right)= \\ $$$$={k}\left({k}^{\mathrm{2}} +{k}−{k}^{\mathrm{2}} −{k}−\mathrm{1}\right)=−{k} \\ $$$$\Rightarrow{U}_{{n}} ={k}^{\mathrm{3}} +\mathrm{3}{k}^{\mathrm{2}} +\mathrm{2}{k}+\mathrm{1}−\mathrm{2}{n}\left({k}^{\mathrm{2}} +{k}\right)−\left(\mathrm{2}{n}−\mathrm{1}\right){k}= \\ $$$$\Rightarrow\underset{{n}=\mathrm{1}} {\overset{{k}} {\sum}}{U}_{{n}} ={k}\left({k}^{\mathrm{3}} +\mathrm{3}{k}^{\mathrm{2}} +\mathrm{2}{k}+\mathrm{1}\right)−{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)^{\mathrm{2}} +{k}−{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)= \\ $$$$={k}^{\mathrm{4}} +\mathrm{3}{k}^{\mathrm{3}} +\mathrm{2}{k}^{\mathrm{2}} +{k}−\left({k}^{\mathrm{4}} +\mathrm{2}{k}^{\mathrm{3}} +{k}^{\mathrm{2}} \right)+{k}−{k}^{\mathrm{3}} −{k}^{\mathrm{2}} = \\ $$$$={k}^{\mathrm{3}} +{k}^{\mathrm{2}} +\mathrm{2}{k}−{k}^{\mathrm{3}} −{k}^{\mathrm{2}} =\mathrm{2}{k} \\ $$$$\Rightarrow\mathrm{2}{k}=\mathrm{72}\Rightarrow{k}=\mathrm{36} \\ $$

Commented by HongKing last updated on 02/Jan/22

perfect my dear Sir thank you so much

$$\mathrm{perfect}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com