Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 162872 by amin96 last updated on 01/Jan/22

Commented by amin96 last updated on 01/Jan/22

PROVE     THAT

$$\boldsymbol{{PROVE}}\:\:\:\:\:\boldsymbol{{THAT}} \\ $$

Answered by Ar Brandon last updated on 01/Jan/22

S=Σ_(k=0) ^n e^(ikx) =((1−e^(i(n+1)x) )/(1−e^(ix) ))     =((e^(i((((n+1)x)/2))) (e^(−i((((n+1)x)/2))) −e^(i((((n+1)x)/2))) ))/(e^(i(x/2)) (e^(−i(x/2)) −e^(i(x/2)) )))     =e^(i((nx)/2)) ((sin((((n+1)x)/2)))/(sin((x/2))))=((sin((((n+1)x)/2)))/(sin(x/2)))[cos((nx)/2)+isin((nx)/2)]  Σ_(k=0) ^n sinkx=ImΣ_(k=0) ^n e^(ix) =((sin((((n+1)x)/2))sin(((nx)/2)))/(sin((x/2))))  =((4sin((((n+1)x)/2))sin(((nx)/2))sin((x/2)))/(4sin^2 (x/2)))  =((2sin((((n+1)x)/2))[cos((((n−1)x)/2))−cos((((n+1)x)/2))])/(2(1−cosx)))  =(((sin(nx)+sinx)−(sin((n+1)x))/(2−2cosx))  =((sin((n+1)x)−sin(nx)−sinx)/(2cosx−2))

$${S}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{e}^{{ikx}} =\frac{\mathrm{1}−{e}^{{i}\left({n}+\mathrm{1}\right){x}} }{\mathrm{1}−{e}^{{ix}} } \\ $$$$\:\:\:=\frac{{e}^{{i}\left(\frac{\left({n}+\mathrm{1}\right){x}}{\mathrm{2}}\right)} \left({e}^{−{i}\left(\frac{\left({n}+\mathrm{1}\right){x}}{\mathrm{2}}\right)} −{e}^{{i}\left(\frac{\left({n}+\mathrm{1}\right){x}}{\mathrm{2}}\right)} \right)}{{e}^{{i}\frac{{x}}{\mathrm{2}}} \left({e}^{−{i}\frac{{x}}{\mathrm{2}}} −{e}^{{i}\frac{{x}}{\mathrm{2}}} \right)} \\ $$$$\:\:\:={e}^{{i}\frac{{nx}}{\mathrm{2}}} \frac{\mathrm{sin}\left(\frac{\left({n}+\mathrm{1}\right){x}}{\mathrm{2}}\right)}{\mathrm{sin}\left(\frac{{x}}{\mathrm{2}}\right)}=\frac{\mathrm{sin}\left(\frac{\left({n}+\mathrm{1}\right){x}}{\mathrm{2}}\right)}{\mathrm{sin}\frac{{x}}{\mathrm{2}}}\left[\mathrm{cos}\frac{{nx}}{\mathrm{2}}+{i}\mathrm{sin}\frac{{nx}}{\mathrm{2}}\right] \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\mathrm{sin}{kx}={Im}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{e}^{{ix}} =\frac{\mathrm{sin}\left(\frac{\left({n}+\mathrm{1}\right){x}}{\mathrm{2}}\right)\mathrm{sin}\left(\frac{{nx}}{\mathrm{2}}\right)}{\mathrm{sin}\left(\frac{{x}}{\mathrm{2}}\right)} \\ $$$$=\frac{\mathrm{4sin}\left(\frac{\left({n}+\mathrm{1}\right){x}}{\mathrm{2}}\right)\mathrm{sin}\left(\frac{{nx}}{\mathrm{2}}\right)\mathrm{sin}\left(\frac{{x}}{\mathrm{2}}\right)}{\mathrm{4sin}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{2sin}\left(\frac{\left({n}+\mathrm{1}\right){x}}{\mathrm{2}}\right)\left[\mathrm{cos}\left(\frac{\left({n}−\mathrm{1}\right){x}}{\mathrm{2}}\right)−\mathrm{cos}\left(\frac{\left({n}+\mathrm{1}\right){x}}{\mathrm{2}}\right)\right]}{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}{x}\right)} \\ $$$$=\frac{\left(\mathrm{sin}\left({nx}\right)+\mathrm{sin}{x}\right)−\left(\mathrm{sin}\left(\left({n}+\mathrm{1}\right){x}\right)\right.}{\mathrm{2}−\mathrm{2cos}{x}} \\ $$$$=\frac{\mathrm{sin}\left(\left({n}+\mathrm{1}\right){x}\right)−\mathrm{sin}\left({nx}\right)−\mathrm{sin}{x}}{\mathrm{2cos}{x}−\mathrm{2}} \\ $$

Commented by amin96 last updated on 02/Jan/22

yes sir. thank you so much

$${yes}\:{sir}.\:{thank}\:{you}\:{so}\:{much} \\ $$

Commented by Ar Brandon last updated on 02/Jan/22

You′re welcome. I left the second one since the first  one could serve as an example for the poster.

$$\mathrm{You}'\mathrm{re}\:\mathrm{welcome}.\:\mathrm{I}\:\mathrm{left}\:\mathrm{the}\:\mathrm{second}\:\mathrm{one}\:\mathrm{since}\:\mathrm{the}\:\mathrm{first} \\ $$$$\mathrm{one}\:\mathrm{could}\:\mathrm{serve}\:\mathrm{as}\:\mathrm{an}\:\mathrm{example}\:\mathrm{for}\:\mathrm{the}\:\mathrm{poster}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com