Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 162949 by ajfour last updated on 02/Jan/22

Commented by ajfour last updated on 02/Jan/22

If the semi ring plus rod combina^n ,  having the same linear mass dens-  ity is released as shown, how long   does it take to turn around the pivot  and hit the ground?

Ifthesemiringplusrodcombinan,havingthesamelinearmassdensityisreleasedasshown,howlongdoesittaketoturnaroundthepivotandhittheground?

Answered by mr W last updated on 02/Jan/22

Commented by mr W last updated on 02/Jan/22

ρ=mass of unit length  m=total mass  m=(πR+3R)ρ=(π+3)Rρ  x=R cos φ  y=((3R)/2)+R sin φ  dm=ρRdφ  me=∫xdm=∫_(−(π/2)) ^(π/2) R cos φ ρRdφ  me=ρR^2 [sin φ]_(−(π/2)) ^(π/2) =2ρR^2   (π+3)Rρe=2ρR^2   ⇒e=((2R)/(π+3))  I_x =(((3Rρ)(3R)^2 )/3)+∫y^2 dm  I_x =9ρR^3 +∫_(−(π/2)) ^(π/2) (((3R)/2)+R sin φ)^2 ρRdφ  I_x =9ρR^3 +ρR^3 ∫_(−(π/2)) ^(π/2) ((3/2)+sin φ)^2 dφ  I_x =9ρR^3 +ρR^3 ∫_(−(π/2)) ^(π/2) ((9/4)+3 sin φ+sin^2  φ)dφ  I_x =9ρR^3 +ρR^3 ∫_(−(π/2)) ^(π/2) (((11)/4)+3 sin φ−((cos 2φ)/2))dφ  I_x =9ρR^3 +ρR^3 [((11φ)/4)−3 cos φ−((sin 2φ)/4)]_(−(π/2)) ^(π/2)   I_x =9ρR^3 +((11πρR^3 )/4)=(9+((11π)/4))ρR^3   ⇒I_x =(((36+11π)mR^2 )/(4(3+π)))  I_y =∫x^2 dm  I_y =∫_(−(π/2)) ^(π/2) R^2  cos^2  φρRdφ  I_y =((ρR^3 )/2)∫_(−(π/2)) ^(π/2) (cos 2φ+1)dφ  I_y =((ρR^3 )/2)[((sin 2φ)/2)+φ]_(−(π/2)) ^(π/2)   I_y =((πρR^3 )/2)  ⇒I_y =((πmR^2 )/(2(3+π)))  I_0 =I_x +I_y =(((36+11π)mR^2 )/(4(3+π)))+((πmR^2 )/(2(3+π)))  ⇒I_0 =(((36+13π)mR^2 )/(4(3+π)))

ρ=massofunitlengthm=totalmassm=(πR+3R)ρ=(π+3)Rρx=Rcosϕy=3R2+Rsinϕdm=ρRdϕme=xdm=π2π2RcosϕρRdϕme=ρR2[sinϕ]π2π2=2ρR2(π+3)Rρe=2ρR2e=2Rπ+3Ix=(3Rρ)(3R)23+y2dmIx=9ρR3+π2π2(3R2+Rsinϕ)2ρRdϕIx=9ρR3+ρR3π2π2(32+sinϕ)2dϕIx=9ρR3+ρR3π2π2(94+3sinϕ+sin2ϕ)dϕIx=9ρR3+ρR3π2π2(114+3sinϕcos2ϕ2)dϕIx=9ρR3+ρR3[11ϕ43cosϕsin2ϕ4]π2π2Ix=9ρR3+11πρR34=(9+11π4)ρR3Ix=(36+11π)mR24(3+π)Iy=x2dmIy=π2π2R2cos2ϕρRdϕIy=ρR32π2π2(cos2ϕ+1)dϕIy=ρR32[sin2ϕ2+ϕ]π2π2Iy=πρR32Iy=πmR22(3+π)I0=Ix+Iy=(36+11π)mR24(3+π)+πmR22(3+π)I0=(36+13π)mR24(3+π)

Commented by mr W last updated on 02/Jan/22

Commented by mr W last updated on 02/Jan/22

cos ϕ=(R/(1.5R))=(2/3) ⇒ϕ=cos^(−1) (2/3)  ω=(dθ/dt)  α=(dω/dt)=ω(dω/dθ)  I_0 α=mg(1.5R sin θ+e cos θ)  (((36+13π)mR^2 )/(4(3+π)))ω(dω/dθ)=mg(((3R)/2) sin θ+((2R)/(3+π)) cos θ)  ω(dω/dθ)=((2g)/((36+13π)R))[3(3+π) sin θ+4 cos θ]  ∫_0 ^ω ωdω=((2g)/((36+13π)R))∫_0 ^θ [3(3+π) sin θ+4 cos θ]dθ  (ω^2 /2)=((2g)/((36+13π)R))[3(3+π)(1−cos θ)+4 sin θ]  ω=(√((4g)/((36+13π)R)))×(√(3(3+π)(1−cos θ)+4 sin θ))  (√(((36+13π)R)/(4g)))(dθ/( (√(3(3+π)(1−cos θ)+4 sin θ))))=dt  (√(((36+13π)R)/(4g)))∫_0 ^ϕ (dθ/( (√(3(3+π)(1−cos θ)+4 sin θ))))=∫_0 ^T dt  T=(√(((36+13π)R)/(4g)))∫_0 ^(cos^(−1) (2/3)) (dθ/( (√(3(3+π)(1−cos θ)+4 sin θ))))  T≈0.751917(√(((36+13π)R)/(4g)))≈3.2956(√(R/g))

cosφ=R1.5R=23φ=cos123ω=dθdtα=dωdt=ωdωdθI0α=mg(1.5Rsinθ+ecosθ)(36+13π)mR24(3+π)ωdωdθ=mg(3R2sinθ+2R3+πcosθ)ωdωdθ=2g(36+13π)R[3(3+π)sinθ+4cosθ]0ωωdω=2g(36+13π)R0θ[3(3+π)sinθ+4cosθ]dθω22=2g(36+13π)R[3(3+π)(1cosθ)+4sinθ]ω=4g(36+13π)R×3(3+π)(1cosθ)+4sinθ(36+13π)R4gdθ3(3+π)(1cosθ)+4sinθ=dt(36+13π)R4g0φdθ3(3+π)(1cosθ)+4sinθ=0TdtT=(36+13π)R4g0cos123dθ3(3+π)(1cosθ)+4sinθT0.751917(36+13π)R4g3.2956Rg

Commented by ajfour last updated on 02/Jan/22

OmG ! gimme time, sir..

OmG!gimmetime,sir..

Commented by mr W last updated on 02/Jan/22

do you have the answer sir?

doyouhavetheanswersir?

Commented by ajfour last updated on 02/Jan/22

no, my creation.., sir!

no,mycreation..,sir!

Commented by mr W last updated on 02/Jan/22

������

Commented by Ar Brandon last updated on 02/Jan/22

Is this Lekh diagram, Sir?

Commented by mr W last updated on 02/Jan/22

for this one i didn′t use LEKH, but  an any image app in my smart phone.  certainly you can use LEKH.

forthisoneididntuseLEKH,butananyimageappinmysmartphone.certainlyyoucanuseLEKH.

Commented by Tawa11 last updated on 03/Jan/22

Great sir.

Greatsir.

Commented by Ar Brandon last updated on 03/Jan/22

OK

Answered by ajfour last updated on 02/Jan/22

Commented by ajfour last updated on 03/Jan/22

Mgrcos (θ+β)+mgLcos θ=I(((ωdω)/dθ))  (ω^2 /(2g))=((Mrsin (θ+β)+mLsin θ)/I)  ∫_0 ^( T) dt=(√(I/(2g)))∫_0 ^( φ) (dθ/( (√(Mrsin (θ+β)+mLsin θ))))  ....  T(√((2g)/I))=∫_0 ^( φ) (dθ/( (√(M(esin θ+((3R)/2)cos θ)+m(((3R)/2)sin θ)))))  cos φ=(2/3)  (M/m)=((πR)/(3R))=(π/3)  M((R/2))+m(0)=(M+m)e  e=((R/2)/(1+(3/π)))=((πR)/(2(π+3)))  I=? (i doubt, if we can easily find..)  T(√((2mgR)/I))=J  J=∫_0 ^( φ) (dθ/( (√([((π/6))((π/(π+3)))+(3/2)]sin θ+((π/2))cos θ))))  i can go this far, Sir!

Mgrcos(θ+β)+mgLcosθ=I(ωdωdθ)ω22g=Mrsin(θ+β)+mLsinθI0Tdt=I2g0ϕdθMrsin(θ+β)+mLsinθ....T2gI=0ϕdθM(esinθ+3R2cosθ)+m(3R2sinθ)cosϕ=23Mm=πR3R=π3M(R2)+m(0)=(M+m)ee=R/21+3π=πR2(π+3)I=?(idoubt,ifwecaneasilyfind..)T2mgRI=JJ=0ϕdθ[(π6)(ππ+3)+32]sinθ+(π2)cosθicangothisfar,Sir!

Commented by mr W last updated on 03/Jan/22

the COM of a semi ring is not (R/2)  apart from the center of the circle,   but ((2R)/π).  therefore it should be:  M(((2R)/π))+m(0)=(M+m)e  e=((2R/π)/(1+(3/π)))=((2R)/(π+3))  i got this too.

theCOMofasemiringisnotR2apartfromthecenterofthecircle,but2Rπ.thereforeitshouldbe:M(2Rπ)+m(0)=(M+m)ee=2R/π1+3π=2Rπ+3igotthistoo.

Commented by mr W last updated on 03/Jan/22

Commented by mr W last updated on 03/Jan/22

I_0  can also be “easily” obtained in   following way:  the MoI of a complete ring about  its axis is obviously I_p =MR^2 , so the   MoI about its diameter is obviously  ((MR^2 )/2), since I_P =I_x +I_y  and I_x =I_y .  on the other side a complete ring  consists of two semi rings.  ((MR^2 )/2)=2(I_(semi,y,0) +m_(semi) e^2 )  I_(semi,y) =I_(semi,y,0) +m_(semi) e^2 =((MR^2 )/4)=((m_(semi) R^2 )/2)  ((MR^2 )/2)=2I_(semi,x,0)   I_(semi,x,0) =((MR^2 )/4)=((m_(semi) R^2 )/2)  I_(semi,x) =I_(semi,x,0) +m_(semi) (((3R)/2))^2   I_(semi,x) =((m_(semi) R^2 )/2)+((9m_(semi) R^2 )/4)=((11m_(semu) R^2 )/4)  I_(rod,y) =0  I_(rod,x) =((m_(rod) (3R)^2 )/3)=3m_(rod) R^2   I_(total,y) =I_(semi,y) +I_(rod,y) =((m_(semi) R^2 )/2)  I_(total,x) =I_(semi,x) +I_(rod,x) =((11m_(semi) R^2 )/4)+3m_(rod) R^2   I_(total,0) =I_(total,y) +I_(total,x)   I_(total,0) =((m_(semi) R^2 )/2)+((11m_(semi) R^2 )/4)+3m_(rod) R^2   I_(total,0) =((13m_(semi) R^2 )/4)+3m_(rod) R^2   m_(semi) =(π/(3+π))m_(total)   m_(rod) =(3/(3+π))m_(total)   I_(total,0) =(((13π)/4)+9)((m_(total) R^2 )/(3+π))=(((36+13π)m_(total) R^2 )/(4(3+π)))

I0canalsobeeasilyobtainedinfollowingway:theMoIofacompleteringaboutitsaxisisobviouslyIp=MR2,sotheMoIaboutitsdiameterisobviouslyMR22,sinceIP=Ix+IyandIx=Iy.ontheothersideacompleteringconsistsoftwosemirings.MR22=2(Isemi,y,0+msemie2)Isemi,y=Isemi,y,0+msemie2=MR24=msemiR22MR22=2Isemi,x,0Isemi,x,0=MR24=msemiR22Isemi,x=Isemi,x,0+msemi(3R2)2Isemi,x=msemiR22+9msemiR24=11msemuR24Irod,y=0Irod,x=mrod(3R)23=3mrodR2Itotal,y=Isemi,y+Irod,y=msemiR22Itotal,x=Isemi,x+Irod,x=11msemiR24+3mrodR2Itotal,0=Itotal,y+Itotal,xItotal,0=msemiR22+11msemiR24+3mrodR2Itotal,0=13msemiR24+3mrodR2msemi=π3+πmtotalmrod=33+πmtotalItotal,0=(13π4+9)mtotalR23+π=(36+13π)mtotalR24(3+π)

Commented by ajfour last updated on 03/Jan/22

I thought  first  //  axis theorem  for moment of inertia wd apply  for symmetrical bodies only,  but really thats the restriction  in  ⊥ axis theorem, so i had  commented such, n yes sir, sorry  for the mistake for c.m. of ring..

Ithoughtfirst//axistheoremformomentofinertiawdapplyforsymmetricalbodiesonly,butreallythatstherestrictioninaxistheorem,soihadcommentedsuch,nyessir,sorryforthemistakeforc.m.ofring..

Answered by mr W last updated on 03/Jan/22

Commented by ajfour last updated on 03/Jan/22

Awezome ..→∞

Awezome..

Commented by mr W last updated on 03/Jan/22

cos ϕ=(2/3)  e=((2R)/(3+π))  I_0 =(((36+13π)mR^2 )/(4(3+π)))  r=(√(e^2 +(((3R)/2))^2 ))=(((√(97+54π+9π^2  ))R)/(2(3+π)))  cos φ=((3R)/(2r))=((3(3+π))/( (√(97+54π+9π^2 ))))  mgr sin θ=I_0 (ω(dω/dθ))  mgr sin θ=(((36+13π)mR^2 )/(4(3+π)))(ω(dω/dθ))  ((2g(√(97+54π+9π^2 )))/((36+13π)R)) sin θ=ω(dω/dθ)  ωdω=((2g(√(97+54π+9π^2 )))/((36+13π)R)) sin θ dθ  (ω^2 /2)=((2g(√(97+54π+9π^2 )))/((36+13π)R)) [cos (φ)−cos θ]  ω^2 =((4g(√(97+54π+9π^2 )))/((36+13π)R)) [((3(3+π))/( (√(97+54π+9π^2 ))))−cos θ]  ω^2 =(g/(a^2 R)) (b−cos θ)  a=(1/2)(√((36+13π)/( (√(97+54π+9π^2 )))))≈1.009402  b=cos φ=((3(3+π))/( (√(97+54π+9π^2 ))))≈0.977236  ω=(dθ/dt)=((√(b−cos θ))/a)(√(g/R))  (√(R/g))×((adθ)/( (√(b−cos θ))))=dt  T=(√(R/g)) ∫_φ ^(ϕ+φ) ((adθ)/( (√(b−cos θ))))≈3.2956(√(R/g))

cosφ=23e=2R3+πI0=(36+13π)mR24(3+π)r=e2+(3R2)2=97+54π+9π2R2(3+π)cosϕ=3R2r=3(3+π)97+54π+9π2mgrsinθ=I0(ωdωdθ)mgrsinθ=(36+13π)mR24(3+π)(ωdωdθ)2g97+54π+9π2(36+13π)Rsinθ=ωdωdθωdω=2g97+54π+9π2(36+13π)Rsinθdθω22=2g97+54π+9π2(36+13π)R[cos(ϕ)cosθ]ω2=4g97+54π+9π2(36+13π)R[3(3+π)97+54π+9π2cosθ]ω2=ga2R(bcosθ)a=1236+13π97+54π+9π21.009402b=cosϕ=3(3+π)97+54π+9π20.977236ω=dθdt=bcosθagRRg×adθbcosθ=dtT=Rgϕφ+ϕadθbcosθ3.2956Rg

Commented by mr W last updated on 03/Jan/22

not really better ...

notreallybetter...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com