Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 162949 by ajfour last updated on 02/Jan/22

Commented by ajfour last updated on 02/Jan/22

If the semi ring plus rod combina^n ,  having the same linear mass dens-  ity is released as shown, how long   does it take to turn around the pivot  and hit the ground?

$${If}\:{the}\:{semi}\:{ring}\:{plus}\:{rod}\:{combina}^{{n}} , \\ $$$${having}\:{the}\:{same}\:{linear}\:{mass}\:{dens}- \\ $$$${ity}\:{is}\:{released}\:{as}\:{shown},\:{how}\:{long}\: \\ $$$${does}\:{it}\:{take}\:{to}\:{turn}\:{around}\:{the}\:{pivot} \\ $$$${and}\:{hit}\:{the}\:{ground}? \\ $$

Answered by mr W last updated on 02/Jan/22

Commented by mr W last updated on 02/Jan/22

ρ=mass of unit length  m=total mass  m=(πR+3R)ρ=(π+3)Rρ  x=R cos φ  y=((3R)/2)+R sin φ  dm=ρRdφ  me=∫xdm=∫_(−(π/2)) ^(π/2) R cos φ ρRdφ  me=ρR^2 [sin φ]_(−(π/2)) ^(π/2) =2ρR^2   (π+3)Rρe=2ρR^2   ⇒e=((2R)/(π+3))  I_x =(((3Rρ)(3R)^2 )/3)+∫y^2 dm  I_x =9ρR^3 +∫_(−(π/2)) ^(π/2) (((3R)/2)+R sin φ)^2 ρRdφ  I_x =9ρR^3 +ρR^3 ∫_(−(π/2)) ^(π/2) ((3/2)+sin φ)^2 dφ  I_x =9ρR^3 +ρR^3 ∫_(−(π/2)) ^(π/2) ((9/4)+3 sin φ+sin^2  φ)dφ  I_x =9ρR^3 +ρR^3 ∫_(−(π/2)) ^(π/2) (((11)/4)+3 sin φ−((cos 2φ)/2))dφ  I_x =9ρR^3 +ρR^3 [((11φ)/4)−3 cos φ−((sin 2φ)/4)]_(−(π/2)) ^(π/2)   I_x =9ρR^3 +((11πρR^3 )/4)=(9+((11π)/4))ρR^3   ⇒I_x =(((36+11π)mR^2 )/(4(3+π)))  I_y =∫x^2 dm  I_y =∫_(−(π/2)) ^(π/2) R^2  cos^2  φρRdφ  I_y =((ρR^3 )/2)∫_(−(π/2)) ^(π/2) (cos 2φ+1)dφ  I_y =((ρR^3 )/2)[((sin 2φ)/2)+φ]_(−(π/2)) ^(π/2)   I_y =((πρR^3 )/2)  ⇒I_y =((πmR^2 )/(2(3+π)))  I_0 =I_x +I_y =(((36+11π)mR^2 )/(4(3+π)))+((πmR^2 )/(2(3+π)))  ⇒I_0 =(((36+13π)mR^2 )/(4(3+π)))

$$\rho={mass}\:{of}\:{unit}\:{length} \\ $$$${m}={total}\:{mass} \\ $$$${m}=\left(\pi{R}+\mathrm{3}{R}\right)\rho=\left(\pi+\mathrm{3}\right){R}\rho \\ $$$${x}={R}\:\mathrm{cos}\:\phi \\ $$$${y}=\frac{\mathrm{3}{R}}{\mathrm{2}}+{R}\:\mathrm{sin}\:\phi \\ $$$${dm}=\rho{Rd}\phi \\ $$$${me}=\int{xdm}=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {R}\:\mathrm{cos}\:\phi\:\rho{Rd}\phi \\ $$$${me}=\rho{R}^{\mathrm{2}} \left[\mathrm{sin}\:\phi\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} =\mathrm{2}\rho{R}^{\mathrm{2}} \\ $$$$\left(\pi+\mathrm{3}\right){R}\rho{e}=\mathrm{2}\rho{R}^{\mathrm{2}} \\ $$$$\Rightarrow{e}=\frac{\mathrm{2}{R}}{\pi+\mathrm{3}} \\ $$$${I}_{{x}} =\frac{\left(\mathrm{3}{R}\rho\right)\left(\mathrm{3}{R}\right)^{\mathrm{2}} }{\mathrm{3}}+\int{y}^{\mathrm{2}} {dm} \\ $$$${I}_{{x}} =\mathrm{9}\rho{R}^{\mathrm{3}} +\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{3}{R}}{\mathrm{2}}+{R}\:\mathrm{sin}\:\phi\right)^{\mathrm{2}} \rho{Rd}\phi \\ $$$${I}_{{x}} =\mathrm{9}\rho{R}^{\mathrm{3}} +\rho{R}^{\mathrm{3}} \int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{sin}\:\phi\right)^{\mathrm{2}} {d}\phi \\ $$$${I}_{{x}} =\mathrm{9}\rho{R}^{\mathrm{3}} +\rho{R}^{\mathrm{3}} \int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{9}}{\mathrm{4}}+\mathrm{3}\:\mathrm{sin}\:\phi+\mathrm{sin}^{\mathrm{2}} \:\phi\right){d}\phi \\ $$$${I}_{{x}} =\mathrm{9}\rho{R}^{\mathrm{3}} +\rho{R}^{\mathrm{3}} \int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{11}}{\mathrm{4}}+\mathrm{3}\:\mathrm{sin}\:\phi−\frac{\mathrm{cos}\:\mathrm{2}\phi}{\mathrm{2}}\right){d}\phi \\ $$$${I}_{{x}} =\mathrm{9}\rho{R}^{\mathrm{3}} +\rho{R}^{\mathrm{3}} \left[\frac{\mathrm{11}\phi}{\mathrm{4}}−\mathrm{3}\:\mathrm{cos}\:\phi−\frac{\mathrm{sin}\:\mathrm{2}\phi}{\mathrm{4}}\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$${I}_{{x}} =\mathrm{9}\rho{R}^{\mathrm{3}} +\frac{\mathrm{11}\pi\rho{R}^{\mathrm{3}} }{\mathrm{4}}=\left(\mathrm{9}+\frac{\mathrm{11}\pi}{\mathrm{4}}\right)\rho{R}^{\mathrm{3}} \\ $$$$\Rightarrow{I}_{{x}} =\frac{\left(\mathrm{36}+\mathrm{11}\pi\right){mR}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{3}+\pi\right)} \\ $$$${I}_{{y}} =\int{x}^{\mathrm{2}} {dm} \\ $$$${I}_{{y}} =\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {R}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\phi\rho{Rd}\phi \\ $$$${I}_{{y}} =\frac{\rho{R}^{\mathrm{3}} }{\mathrm{2}}\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{cos}\:\mathrm{2}\phi+\mathrm{1}\right){d}\phi \\ $$$${I}_{{y}} =\frac{\rho{R}^{\mathrm{3}} }{\mathrm{2}}\left[\frac{\mathrm{sin}\:\mathrm{2}\phi}{\mathrm{2}}+\phi\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$${I}_{{y}} =\frac{\pi\rho{R}^{\mathrm{3}} }{\mathrm{2}} \\ $$$$\Rightarrow{I}_{{y}} =\frac{\pi{mR}^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{3}+\pi\right)} \\ $$$${I}_{\mathrm{0}} ={I}_{{x}} +{I}_{{y}} =\frac{\left(\mathrm{36}+\mathrm{11}\pi\right){mR}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{3}+\pi\right)}+\frac{\pi{mR}^{\mathrm{2}} }{\mathrm{2}\left(\mathrm{3}+\pi\right)} \\ $$$$\Rightarrow{I}_{\mathrm{0}} =\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){mR}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{3}+\pi\right)} \\ $$

Commented by mr W last updated on 02/Jan/22

Commented by mr W last updated on 02/Jan/22

cos ϕ=(R/(1.5R))=(2/3) ⇒ϕ=cos^(−1) (2/3)  ω=(dθ/dt)  α=(dω/dt)=ω(dω/dθ)  I_0 α=mg(1.5R sin θ+e cos θ)  (((36+13π)mR^2 )/(4(3+π)))ω(dω/dθ)=mg(((3R)/2) sin θ+((2R)/(3+π)) cos θ)  ω(dω/dθ)=((2g)/((36+13π)R))[3(3+π) sin θ+4 cos θ]  ∫_0 ^ω ωdω=((2g)/((36+13π)R))∫_0 ^θ [3(3+π) sin θ+4 cos θ]dθ  (ω^2 /2)=((2g)/((36+13π)R))[3(3+π)(1−cos θ)+4 sin θ]  ω=(√((4g)/((36+13π)R)))×(√(3(3+π)(1−cos θ)+4 sin θ))  (√(((36+13π)R)/(4g)))(dθ/( (√(3(3+π)(1−cos θ)+4 sin θ))))=dt  (√(((36+13π)R)/(4g)))∫_0 ^ϕ (dθ/( (√(3(3+π)(1−cos θ)+4 sin θ))))=∫_0 ^T dt  T=(√(((36+13π)R)/(4g)))∫_0 ^(cos^(−1) (2/3)) (dθ/( (√(3(3+π)(1−cos θ)+4 sin θ))))  T≈0.751917(√(((36+13π)R)/(4g)))≈3.2956(√(R/g))

$$\mathrm{cos}\:\varphi=\frac{{R}}{\mathrm{1}.\mathrm{5}{R}}=\frac{\mathrm{2}}{\mathrm{3}}\:\Rightarrow\varphi=\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\omega=\frac{{d}\theta}{{dt}} \\ $$$$\alpha=\frac{{d}\omega}{{dt}}=\omega\frac{{d}\omega}{{d}\theta} \\ $$$${I}_{\mathrm{0}} \alpha={mg}\left(\mathrm{1}.\mathrm{5}{R}\:\mathrm{sin}\:\theta+{e}\:\mathrm{cos}\:\theta\right) \\ $$$$\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){mR}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{3}+\pi\right)}\omega\frac{{d}\omega}{{d}\theta}={mg}\left(\frac{\mathrm{3}{R}}{\mathrm{2}}\:\mathrm{sin}\:\theta+\frac{\mathrm{2}{R}}{\mathrm{3}+\pi}\:\mathrm{cos}\:\theta\right) \\ $$$$\omega\frac{{d}\omega}{{d}\theta}=\frac{\mathrm{2}{g}}{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}\left[\mathrm{3}\left(\mathrm{3}+\pi\right)\:\mathrm{sin}\:\theta+\mathrm{4}\:\mathrm{cos}\:\theta\right] \\ $$$$\int_{\mathrm{0}} ^{\omega} \omega{d}\omega=\frac{\mathrm{2}{g}}{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}\int_{\mathrm{0}} ^{\theta} \left[\mathrm{3}\left(\mathrm{3}+\pi\right)\:\mathrm{sin}\:\theta+\mathrm{4}\:\mathrm{cos}\:\theta\right]{d}\theta \\ $$$$\frac{\omega^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{2}{g}}{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}\left[\mathrm{3}\left(\mathrm{3}+\pi\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right)+\mathrm{4}\:\mathrm{sin}\:\theta\right] \\ $$$$\omega=\sqrt{\frac{\mathrm{4}{g}}{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}}×\sqrt{\mathrm{3}\left(\mathrm{3}+\pi\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right)+\mathrm{4}\:\mathrm{sin}\:\theta} \\ $$$$\sqrt{\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}{\mathrm{4}{g}}}\frac{{d}\theta}{\:\sqrt{\mathrm{3}\left(\mathrm{3}+\pi\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right)+\mathrm{4}\:\mathrm{sin}\:\theta}}={dt} \\ $$$$\sqrt{\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}{\mathrm{4}{g}}}\int_{\mathrm{0}} ^{\varphi} \frac{{d}\theta}{\:\sqrt{\mathrm{3}\left(\mathrm{3}+\pi\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right)+\mathrm{4}\:\mathrm{sin}\:\theta}}=\int_{\mathrm{0}} ^{{T}} {dt} \\ $$$${T}=\sqrt{\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}{\mathrm{4}{g}}}\int_{\mathrm{0}} ^{\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{3}}} \frac{{d}\theta}{\:\sqrt{\mathrm{3}\left(\mathrm{3}+\pi\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right)+\mathrm{4}\:\mathrm{sin}\:\theta}} \\ $$$${T}\approx\mathrm{0}.\mathrm{751917}\sqrt{\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}{\mathrm{4}{g}}}\approx\mathrm{3}.\mathrm{2956}\sqrt{\frac{{R}}{{g}}} \\ $$

Commented by ajfour last updated on 02/Jan/22

OmG ! gimme time, sir..

$${OmG}\:!\:{gimme}\:{time},\:{sir}.. \\ $$

Commented by mr W last updated on 02/Jan/22

do you have the answer sir?

$${do}\:{you}\:{have}\:{the}\:{answer}\:{sir}? \\ $$

Commented by ajfour last updated on 02/Jan/22

no, my creation.., sir!

$${no},\:{my}\:{creation}..,\:{sir}! \\ $$

Commented by mr W last updated on 02/Jan/22

������

Commented by Ar Brandon last updated on 02/Jan/22

Is this Lekh diagram, Sir?

Commented by mr W last updated on 02/Jan/22

for this one i didn′t use LEKH, but  an any image app in my smart phone.  certainly you can use LEKH.

$${for}\:{this}\:{one}\:{i}\:{didn}'{t}\:{use}\:{LEKH},\:{but} \\ $$$${an}\:{any}\:{image}\:{app}\:{in}\:{my}\:{smart}\:{phone}. \\ $$$${certainly}\:{you}\:{can}\:{use}\:{LEKH}. \\ $$

Commented by Tawa11 last updated on 03/Jan/22

Great sir.

$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Commented by Ar Brandon last updated on 03/Jan/22

OK

Answered by ajfour last updated on 02/Jan/22

Commented by ajfour last updated on 03/Jan/22

Mgrcos (θ+β)+mgLcos θ=I(((ωdω)/dθ))  (ω^2 /(2g))=((Mrsin (θ+β)+mLsin θ)/I)  ∫_0 ^( T) dt=(√(I/(2g)))∫_0 ^( φ) (dθ/( (√(Mrsin (θ+β)+mLsin θ))))  ....  T(√((2g)/I))=∫_0 ^( φ) (dθ/( (√(M(esin θ+((3R)/2)cos θ)+m(((3R)/2)sin θ)))))  cos φ=(2/3)  (M/m)=((πR)/(3R))=(π/3)  M((R/2))+m(0)=(M+m)e  e=((R/2)/(1+(3/π)))=((πR)/(2(π+3)))  I=? (i doubt, if we can easily find..)  T(√((2mgR)/I))=J  J=∫_0 ^( φ) (dθ/( (√([((π/6))((π/(π+3)))+(3/2)]sin θ+((π/2))cos θ))))  i can go this far, Sir!

$${Mgr}\mathrm{cos}\:\left(\theta+\beta\right)+{mgL}\mathrm{cos}\:\theta={I}\left(\frac{\omega{d}\omega}{{d}\theta}\right) \\ $$$$\frac{\omega^{\mathrm{2}} }{\mathrm{2}{g}}=\frac{{Mr}\mathrm{sin}\:\left(\theta+\beta\right)+{mL}\mathrm{sin}\:\theta}{{I}} \\ $$$$\int_{\mathrm{0}} ^{\:{T}} {dt}=\sqrt{\frac{{I}}{\mathrm{2}{g}}}\int_{\mathrm{0}} ^{\:\phi} \frac{{d}\theta}{\:\sqrt{{Mr}\mathrm{sin}\:\left(\theta+\beta\right)+{mL}\mathrm{sin}\:\theta}} \\ $$$$.... \\ $$$${T}\sqrt{\frac{\mathrm{2}{g}}{{I}}}=\int_{\mathrm{0}} ^{\:\phi} \frac{{d}\theta}{\:\sqrt{{M}\left({e}\mathrm{sin}\:\theta+\frac{\mathrm{3}{R}}{\mathrm{2}}\mathrm{cos}\:\theta\right)+{m}\left(\frac{\mathrm{3}{R}}{\mathrm{2}}\mathrm{sin}\:\theta\right)}} \\ $$$${cos}\:\phi=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\frac{{M}}{{m}}=\frac{\pi{R}}{\mathrm{3}{R}}=\frac{\pi}{\mathrm{3}} \\ $$$${M}\left(\frac{{R}}{\mathrm{2}}\right)+{m}\left(\mathrm{0}\right)=\left({M}+{m}\right){e} \\ $$$${e}=\frac{{R}/\mathrm{2}}{\mathrm{1}+\frac{\mathrm{3}}{\pi}}=\frac{\pi{R}}{\mathrm{2}\left(\pi+\mathrm{3}\right)} \\ $$$${I}=?\:\left({i}\:{doubt},\:{if}\:{we}\:{can}\:{easily}\:{find}..\right) \\ $$$${T}\sqrt{\frac{\mathrm{2}{mgR}}{{I}}}={J} \\ $$$${J}=\int_{\mathrm{0}} ^{\:\phi} \frac{{d}\theta}{\:\sqrt{\left[\left(\frac{\pi}{\mathrm{6}}\right)\left(\frac{\pi}{\pi+\mathrm{3}}\right)+\frac{\mathrm{3}}{\mathrm{2}}\right]\mathrm{sin}\:\theta+\left(\frac{\pi}{\mathrm{2}}\right)\mathrm{cos}\:\theta}} \\ $$$${i}\:{can}\:{go}\:{this}\:{far},\:{Sir}! \\ $$

Commented by mr W last updated on 03/Jan/22

the COM of a semi ring is not (R/2)  apart from the center of the circle,   but ((2R)/π).  therefore it should be:  M(((2R)/π))+m(0)=(M+m)e  e=((2R/π)/(1+(3/π)))=((2R)/(π+3))  i got this too.

$${the}\:{COM}\:{of}\:{a}\:{semi}\:{ring}\:{is}\:{not}\:\frac{{R}}{\mathrm{2}} \\ $$$${apart}\:{from}\:{the}\:{center}\:{of}\:{the}\:{circle},\: \\ $$$${but}\:\frac{\mathrm{2}{R}}{\pi}. \\ $$$${therefore}\:{it}\:{should}\:{be}: \\ $$$${M}\left(\frac{\mathrm{2}{R}}{\pi}\right)+{m}\left(\mathrm{0}\right)=\left({M}+{m}\right){e} \\ $$$${e}=\frac{\mathrm{2}{R}/\pi}{\mathrm{1}+\frac{\mathrm{3}}{\pi}}=\frac{\mathrm{2}{R}}{\pi+\mathrm{3}} \\ $$$${i}\:{got}\:{this}\:{too}. \\ $$

Commented by mr W last updated on 03/Jan/22

Commented by mr W last updated on 03/Jan/22

I_0  can also be “easily” obtained in   following way:  the MoI of a complete ring about  its axis is obviously I_p =MR^2 , so the   MoI about its diameter is obviously  ((MR^2 )/2), since I_P =I_x +I_y  and I_x =I_y .  on the other side a complete ring  consists of two semi rings.  ((MR^2 )/2)=2(I_(semi,y,0) +m_(semi) e^2 )  I_(semi,y) =I_(semi,y,0) +m_(semi) e^2 =((MR^2 )/4)=((m_(semi) R^2 )/2)  ((MR^2 )/2)=2I_(semi,x,0)   I_(semi,x,0) =((MR^2 )/4)=((m_(semi) R^2 )/2)  I_(semi,x) =I_(semi,x,0) +m_(semi) (((3R)/2))^2   I_(semi,x) =((m_(semi) R^2 )/2)+((9m_(semi) R^2 )/4)=((11m_(semu) R^2 )/4)  I_(rod,y) =0  I_(rod,x) =((m_(rod) (3R)^2 )/3)=3m_(rod) R^2   I_(total,y) =I_(semi,y) +I_(rod,y) =((m_(semi) R^2 )/2)  I_(total,x) =I_(semi,x) +I_(rod,x) =((11m_(semi) R^2 )/4)+3m_(rod) R^2   I_(total,0) =I_(total,y) +I_(total,x)   I_(total,0) =((m_(semi) R^2 )/2)+((11m_(semi) R^2 )/4)+3m_(rod) R^2   I_(total,0) =((13m_(semi) R^2 )/4)+3m_(rod) R^2   m_(semi) =(π/(3+π))m_(total)   m_(rod) =(3/(3+π))m_(total)   I_(total,0) =(((13π)/4)+9)((m_(total) R^2 )/(3+π))=(((36+13π)m_(total) R^2 )/(4(3+π)))

$${I}_{\mathrm{0}} \:{can}\:{also}\:{be}\:``{easily}''\:{obtained}\:{in}\: \\ $$$${following}\:{way}: \\ $$$${the}\:{MoI}\:{of}\:{a}\:{complete}\:{ring}\:{about} \\ $$$${its}\:{axis}\:{is}\:{obviously}\:{I}_{{p}} ={MR}^{\mathrm{2}} ,\:{so}\:{the}\: \\ $$$${MoI}\:{about}\:{its}\:{diameter}\:{is}\:{obviously} \\ $$$$\frac{{MR}^{\mathrm{2}} }{\mathrm{2}},\:{since}\:{I}_{{P}} ={I}_{{x}} +{I}_{{y}} \:{and}\:{I}_{{x}} ={I}_{{y}} . \\ $$$${on}\:{the}\:{other}\:{side}\:{a}\:{complete}\:{ring} \\ $$$${consists}\:{of}\:{two}\:{semi}\:{rings}. \\ $$$$\frac{{MR}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{2}\left({I}_{{semi},{y},\mathrm{0}} +{m}_{{semi}} {e}^{\mathrm{2}} \right) \\ $$$${I}_{{semi},{y}} ={I}_{{semi},{y},\mathrm{0}} +{m}_{{semi}} {e}^{\mathrm{2}} =\frac{{MR}^{\mathrm{2}} }{\mathrm{4}}=\frac{{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{{MR}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{2}{I}_{{semi},{x},\mathrm{0}} \\ $$$${I}_{{semi},{x},\mathrm{0}} =\frac{{MR}^{\mathrm{2}} }{\mathrm{4}}=\frac{{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${I}_{{semi},{x}} ={I}_{{semi},{x},\mathrm{0}} +{m}_{{semi}} \left(\frac{\mathrm{3}{R}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${I}_{{semi},{x}} =\frac{{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{9}{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{4}}=\frac{\mathrm{11}{m}_{{semu}} {R}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${I}_{{rod},{y}} =\mathrm{0} \\ $$$${I}_{{rod},{x}} =\frac{{m}_{{rod}} \left(\mathrm{3}{R}\right)^{\mathrm{2}} }{\mathrm{3}}=\mathrm{3}{m}_{{rod}} {R}^{\mathrm{2}} \\ $$$${I}_{{total},{y}} ={I}_{{semi},{y}} +{I}_{{rod},{y}} =\frac{{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${I}_{{total},{x}} ={I}_{{semi},{x}} +{I}_{{rod},{x}} =\frac{\mathrm{11}{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{3}{m}_{{rod}} {R}^{\mathrm{2}} \\ $$$${I}_{{total},\mathrm{0}} ={I}_{{total},{y}} +{I}_{{total},{x}} \\ $$$${I}_{{total},\mathrm{0}} =\frac{{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{11}{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{3}{m}_{{rod}} {R}^{\mathrm{2}} \\ $$$${I}_{{total},\mathrm{0}} =\frac{\mathrm{13}{m}_{{semi}} {R}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{3}{m}_{{rod}} {R}^{\mathrm{2}} \\ $$$${m}_{{semi}} =\frac{\pi}{\mathrm{3}+\pi}{m}_{{total}} \\ $$$${m}_{{rod}} =\frac{\mathrm{3}}{\mathrm{3}+\pi}{m}_{{total}} \\ $$$${I}_{{total},\mathrm{0}} =\left(\frac{\mathrm{13}\pi}{\mathrm{4}}+\mathrm{9}\right)\frac{{m}_{{total}} {R}^{\mathrm{2}} }{\mathrm{3}+\pi}=\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){m}_{{total}} {R}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{3}+\pi\right)} \\ $$

Commented by ajfour last updated on 03/Jan/22

I thought  first  //  axis theorem  for moment of inertia wd apply  for symmetrical bodies only,  but really thats the restriction  in  ⊥ axis theorem, so i had  commented such, n yes sir, sorry  for the mistake for c.m. of ring..

$${I}\:{thought}\:\:{first}\:\://\:\:{axis}\:{theorem} \\ $$$${for}\:{moment}\:{of}\:{inertia}\:{wd}\:{apply} \\ $$$${for}\:{symmetrical}\:{bodies}\:{only}, \\ $$$${but}\:{really}\:{thats}\:{the}\:{restriction} \\ $$$${in}\:\:\bot\:{axis}\:{theorem},\:{so}\:{i}\:{had} \\ $$$${commented}\:{such},\:{n}\:{yes}\:{sir},\:{sorry} \\ $$$${for}\:{the}\:{mistake}\:{for}\:{c}.{m}.\:{of}\:{ring}.. \\ $$

Answered by mr W last updated on 03/Jan/22

Commented by ajfour last updated on 03/Jan/22

Awezome ..→∞

$${Awezome}\:..\rightarrow\infty \\ $$

Commented by mr W last updated on 03/Jan/22

cos ϕ=(2/3)  e=((2R)/(3+π))  I_0 =(((36+13π)mR^2 )/(4(3+π)))  r=(√(e^2 +(((3R)/2))^2 ))=(((√(97+54π+9π^2  ))R)/(2(3+π)))  cos φ=((3R)/(2r))=((3(3+π))/( (√(97+54π+9π^2 ))))  mgr sin θ=I_0 (ω(dω/dθ))  mgr sin θ=(((36+13π)mR^2 )/(4(3+π)))(ω(dω/dθ))  ((2g(√(97+54π+9π^2 )))/((36+13π)R)) sin θ=ω(dω/dθ)  ωdω=((2g(√(97+54π+9π^2 )))/((36+13π)R)) sin θ dθ  (ω^2 /2)=((2g(√(97+54π+9π^2 )))/((36+13π)R)) [cos (φ)−cos θ]  ω^2 =((4g(√(97+54π+9π^2 )))/((36+13π)R)) [((3(3+π))/( (√(97+54π+9π^2 ))))−cos θ]  ω^2 =(g/(a^2 R)) (b−cos θ)  a=(1/2)(√((36+13π)/( (√(97+54π+9π^2 )))))≈1.009402  b=cos φ=((3(3+π))/( (√(97+54π+9π^2 ))))≈0.977236  ω=(dθ/dt)=((√(b−cos θ))/a)(√(g/R))  (√(R/g))×((adθ)/( (√(b−cos θ))))=dt  T=(√(R/g)) ∫_φ ^(ϕ+φ) ((adθ)/( (√(b−cos θ))))≈3.2956(√(R/g))

$$\mathrm{cos}\:\varphi=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${e}=\frac{\mathrm{2}{R}}{\mathrm{3}+\pi} \\ $$$${I}_{\mathrm{0}} =\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){mR}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{3}+\pi\right)} \\ $$$${r}=\sqrt{{e}^{\mathrm{2}} +\left(\frac{\mathrm{3}{R}}{\mathrm{2}}\right)^{\mathrm{2}} }=\frac{\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} \:}{R}}{\mathrm{2}\left(\mathrm{3}+\pi\right)} \\ $$$$\mathrm{cos}\:\phi=\frac{\mathrm{3}{R}}{\mathrm{2}{r}}=\frac{\mathrm{3}\left(\mathrm{3}+\pi\right)}{\:\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} }} \\ $$$${mgr}\:\mathrm{sin}\:\theta={I}_{\mathrm{0}} \left(\omega\frac{{d}\omega}{{d}\theta}\right) \\ $$$${mgr}\:\mathrm{sin}\:\theta=\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){mR}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{3}+\pi\right)}\left(\omega\frac{{d}\omega}{{d}\theta}\right) \\ $$$$\frac{\mathrm{2}{g}\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} }}{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}\:\mathrm{sin}\:\theta=\omega\frac{{d}\omega}{{d}\theta} \\ $$$$\omega{d}\omega=\frac{\mathrm{2}{g}\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} }}{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}\:\mathrm{sin}\:\theta\:{d}\theta \\ $$$$\frac{\omega^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{2}{g}\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} }}{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}\:\left[\mathrm{cos}\:\left(\phi\right)−\mathrm{cos}\:\theta\right] \\ $$$$\omega^{\mathrm{2}} =\frac{\mathrm{4}{g}\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} }}{\left(\mathrm{36}+\mathrm{13}\pi\right){R}}\:\left[\frac{\mathrm{3}\left(\mathrm{3}+\pi\right)}{\:\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} }}−\mathrm{cos}\:\theta\right] \\ $$$$\omega^{\mathrm{2}} =\frac{{g}}{{a}^{\mathrm{2}} {R}}\:\left({b}−\mathrm{cos}\:\theta\right) \\ $$$${a}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\mathrm{36}+\mathrm{13}\pi}{\:\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} }}}\approx\mathrm{1}.\mathrm{009402} \\ $$$${b}=\mathrm{cos}\:\phi=\frac{\mathrm{3}\left(\mathrm{3}+\pi\right)}{\:\sqrt{\mathrm{97}+\mathrm{54}\pi+\mathrm{9}\pi^{\mathrm{2}} }}\approx\mathrm{0}.\mathrm{977236} \\ $$$$\omega=\frac{{d}\theta}{{dt}}=\frac{\sqrt{{b}−\mathrm{cos}\:\theta}}{{a}}\sqrt{\frac{{g}}{{R}}} \\ $$$$\sqrt{\frac{{R}}{{g}}}×\frac{{ad}\theta}{\:\sqrt{{b}−\mathrm{cos}\:\theta}}={dt} \\ $$$${T}=\sqrt{\frac{{R}}{{g}}}\:\int_{\phi} ^{\varphi+\phi} \frac{{ad}\theta}{\:\sqrt{{b}−\mathrm{cos}\:\theta}}\approx\mathrm{3}.\mathrm{2956}\sqrt{\frac{{R}}{{g}}} \\ $$

Commented by mr W last updated on 03/Jan/22

not really better ...

$${not}\:{really}\:{better}\:... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com