Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 162995 by HongKing last updated on 02/Jan/22

if  a_k  > 0  ;  k = 1,5^(−)   then prove that exists  i,j∈1,5^(−)   such that:  0 ≤ ((a_j  - a_i )/(1 + a_i a_j )) ≤ (√2) - 1

$$\mathrm{if}\:\:\mathrm{a}_{\boldsymbol{\mathrm{k}}} \:>\:\mathrm{0}\:\:;\:\:\mathrm{k}\:=\:\overline {\mathrm{1},\mathrm{5}} \\ $$ $$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{exists}\:\:\boldsymbol{\mathrm{i}},\boldsymbol{\mathrm{j}}\in\overline {\mathrm{1},\mathrm{5}}\:\:\mathrm{such}\:\mathrm{that}: \\ $$ $$\mathrm{0}\:\leqslant\:\frac{\mathrm{a}_{\boldsymbol{\mathrm{j}}} \:-\:\mathrm{a}_{\boldsymbol{\mathrm{i}}} }{\mathrm{1}\:+\:\mathrm{a}_{\boldsymbol{\mathrm{i}}} \mathrm{a}_{\boldsymbol{\mathrm{j}}} }\:\leqslant\:\sqrt{\mathrm{2}}\:-\:\mathrm{1} \\ $$

Answered by mindispower last updated on 03/Jan/22

a_k =tg(β_k ),β_k ∈]0,(π/2)[,x→tg(x) bijection [0,(π/2)[→[0,∞[  α_k −a_i =((tg(β_k )−tg(β_i ))/(1+tg(β_k )tg(β_i )))=tg(β_k −β_i )  ⇔to show∃i,j such  0≤tg(β_j −β_i )≤(√2)−1  [0,(π/2)[]=∪_(k=0) ^3 [((kπ)/8),((k+1)/2)π[...(E)  if ∃ i,j such β_i =β_j  true tg(β_i −β_j )=0∈[0,(√2)−1[  suppose ∀(i,j)∈[1,5] β_i #β_j   ⇒∃(i,j),∃k∈[0,] such That β_i ,β_(j ) ∈[((kπ)/8),((k+1)/8)π[  5 number withe 4 interval ε  0≤∣β_i −β_j ∣≤(π/8)  0≤tg∣(β_j −β_i )∣≤tg((π/8))  tg((π/8))=((2sin^2 ((π/8)))/(sin(2.(π/8))))=((1−cos((π/4)))/(sin((π/4))))=(√2)−1  ⇒∃(i,j) such that0≤ ((tg(β_i )−tg(β_j ))/(1+tg(β_i )tg(β_j )))=((a_i −a_j )/(1+a_i a_j ))≤(√2)−1

$$\left.{a}_{{k}} ={tg}\left(\beta_{{k}} \right),\beta_{{k}} \in\right]\mathrm{0},\frac{\pi}{\mathrm{2}}\left[,{x}\rightarrow{tg}\left({x}\right)\:{bijection}\:\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\left[\rightarrow\left[\mathrm{0},\infty\left[\right.\right.\right.\right.\right. \\ $$ $$\alpha_{{k}} −{a}_{{i}} =\frac{{tg}\left(\beta_{{k}} \right)−{tg}\left(\beta_{{i}} \right)}{\mathrm{1}+{tg}\left(\beta_{{k}} \right){tg}\left(\beta_{{i}} \right)}={tg}\left(\beta_{{k}} −\beta_{{i}} \right) \\ $$ $$\Leftrightarrow{to}\:{show}\exists{i},{j}\:{such} \\ $$ $$\mathrm{0}\leqslant{tg}\left(\beta_{{j}} −\beta_{{i}} \right)\leqslant\sqrt{\mathrm{2}}−\mathrm{1} \\ $$ $$\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\left[\right]=\underset{{k}=\mathrm{0}} {\overset{\mathrm{3}} {\cup}}\left[\frac{{k}\pi}{\mathrm{8}},\frac{{k}+\mathrm{1}}{\mathrm{2}}\pi\left[...\left({E}\right)\right.\right.\right. \\ $$ $${if}\:\exists\:{i},{j}\:{such}\:\beta_{{i}} =\beta_{{j}} \:{true}\:{tg}\left(\beta_{{i}} −\beta_{{j}} \right)=\mathrm{0}\in\left[\mathrm{0},\sqrt{\mathrm{2}}−\mathrm{1}\left[\right.\right. \\ $$ $${suppose}\:\forall\left({i},{j}\right)\in\left[\mathrm{1},\mathrm{5}\right]\:\beta_{{i}} #\beta_{{j}} \\ $$ $$\Rightarrow\exists\left({i},{j}\right),\exists{k}\in\left[\mathrm{0},\right]\:{such}\:{That}\:\beta_{{i}} ,\beta_{{j}\:} \in\left[\frac{{k}\pi}{\mathrm{8}},\frac{{k}+\mathrm{1}}{\mathrm{8}}\pi\left[\right.\right. \\ $$ $$\mathrm{5}\:{number}\:{withe}\:\mathrm{4}\:{interval}\:\varepsilon \\ $$ $$\mathrm{0}\leqslant\mid\beta_{{i}} −\beta_{{j}} \mid\leqslant\frac{\pi}{\mathrm{8}} \\ $$ $$\mathrm{0}\leqslant{tg}\mid\left(\beta_{{j}} −\beta_{{i}} \right)\mid\leqslant{tg}\left(\frac{\pi}{\mathrm{8}}\right) \\ $$ $${tg}\left(\frac{\pi}{\mathrm{8}}\right)=\frac{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{8}}\right)}{{sin}\left(\mathrm{2}.\frac{\pi}{\mathrm{8}}\right)}=\frac{\mathrm{1}−{cos}\left(\frac{\pi}{\mathrm{4}}\right)}{{sin}\left(\frac{\pi}{\mathrm{4}}\right)}=\sqrt{\mathrm{2}}−\mathrm{1} \\ $$ $$\Rightarrow\exists\left({i},{j}\right)\:{such}\:{that}\mathrm{0}\leqslant\:\frac{{tg}\left(\beta_{{i}} \right)−{tg}\left(\beta_{{j}} \right)}{\mathrm{1}+{tg}\left(\beta_{{i}} \right){tg}\left(\beta_{{j}} \right)}=\frac{{a}_{{i}} −{a}_{{j}} }{\mathrm{1}+{a}_{{i}} {a}_{{j}} }\leqslant\sqrt{\mathrm{2}}−\mathrm{1} \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$

Commented byHongKing last updated on 03/Jan/22

Perfect solution my dear Sir than you so much

$$\mathrm{Perfect}\:\mathrm{solution}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{than}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com