Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 163053 by ajfour last updated on 03/Jan/22

Commented by ajfour last updated on 03/Jan/22

Q.162949  (revisit)

$${Q}.\mathrm{162949}\:\:\left({revisit}\right) \\ $$

Answered by ajfour last updated on 04/Jan/22

  e=((2R)/π)=((4a)/π)        (2a=R)    r^2 =(2acos φ)^2 +(3a+2asin φ)^2   dm_(sc) =2λadφ  I_0 =((2aλ(6a)^2 )/3)+∫r^2 dm_(sc)     =24λa^3 +2λa^3 ∫_0 ^( π) (13+12sin φ)dφ    =24λa^3 +2λa^3 (13π+24)   say  m_(rod) =m=6λa  ⇒  I_0 =ma^2 (12+((13π)/3))=(((36+13π)ma^2 )/3)  M=(((π+3)m)/3)  ⇒ I_0 =(((36+13π)MR^2 )/(4(π+3)))          ✓  for center of mass:  2πaλ(((4a)/π))=(2πaλ+6aλ)s  s=((4a)/(π+3))  p^2 =s^2 +9a^2   tan β=(s/(3a))=(4/(3(π+3)))  Mgpcos (θ+β)=I_0 (((ωdω)/dθ))  ω^2 =2Mgp{sin (θ+β)−sin β}  T=(√(I_0 /(2Mgp)))∫_0 ^(  (π/2)−ϕ) (dθ/( (√(sin (θ+β)−sin β))))  where  ϕ=sin^(−1) (2/3)  T=(√((a(36+13π))/(4(3+π)g(√(((4/(π+3)))^2 +9)))))×∫★  ∫★=∫_0 ^(  cos^(−1) (2/3)) (dθ/( (√(sin (θ+tan^(−1) (4/(3(π+3))))−(4/( (√(16+9(π+3)^2 ))))))))  Sir, please  check  the answer this  yields  with yours..i will try too..

$$\:\:{e}=\frac{\mathrm{2}{R}}{\pi}=\frac{\mathrm{4}{a}}{\pi}\:\:\:\:\:\:\:\:\left(\mathrm{2}{a}={R}\right) \\ $$$$\:\:{r}^{\mathrm{2}} =\left(\mathrm{2}{a}\mathrm{cos}\:\phi\right)^{\mathrm{2}} +\left(\mathrm{3}{a}+\mathrm{2}{a}\mathrm{sin}\:\phi\right)^{\mathrm{2}} \\ $$$${dm}_{{sc}} =\mathrm{2}\lambda{ad}\phi \\ $$$${I}_{\mathrm{0}} =\frac{\mathrm{2}{a}\lambda\left(\mathrm{6}{a}\right)^{\mathrm{2}} }{\mathrm{3}}+\int{r}^{\mathrm{2}} {dm}_{{sc}} \\ $$$$\:\:=\mathrm{24}\lambda{a}^{\mathrm{3}} +\mathrm{2}\lambda{a}^{\mathrm{3}} \int_{\mathrm{0}} ^{\:\pi} \left(\mathrm{13}+\mathrm{12sin}\:\phi\right){d}\phi \\ $$$$\:\:=\mathrm{24}\lambda{a}^{\mathrm{3}} +\mathrm{2}\lambda{a}^{\mathrm{3}} \left(\mathrm{13}\pi+\mathrm{24}\right) \\ $$$$\:{say}\:\:{m}_{{rod}} ={m}=\mathrm{6}\lambda{a} \\ $$$$\Rightarrow\:\:{I}_{\mathrm{0}} ={ma}^{\mathrm{2}} \left(\mathrm{12}+\frac{\mathrm{13}\pi}{\mathrm{3}}\right)=\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){ma}^{\mathrm{2}} }{\mathrm{3}} \\ $$$${M}=\frac{\left(\pi+\mathrm{3}\right){m}}{\mathrm{3}} \\ $$$$\Rightarrow\:{I}_{\mathrm{0}} =\frac{\left(\mathrm{36}+\mathrm{13}\pi\right){MR}^{\mathrm{2}} }{\mathrm{4}\left(\pi+\mathrm{3}\right)} \\ $$$$ \\ $$$$\: \\ $$$$\:\:\:\checkmark \\ $$$${for}\:{center}\:{of}\:{mass}: \\ $$$$\mathrm{2}\pi{a}\lambda\left(\frac{\mathrm{4}{a}}{\pi}\right)=\left(\mathrm{2}\pi{a}\lambda+\mathrm{6}{a}\lambda\right){s} \\ $$$${s}=\frac{\mathrm{4}{a}}{\pi+\mathrm{3}} \\ $$$${p}^{\mathrm{2}} ={s}^{\mathrm{2}} +\mathrm{9}{a}^{\mathrm{2}} \\ $$$$\mathrm{tan}\:\beta=\frac{{s}}{\mathrm{3}{a}}=\frac{\mathrm{4}}{\mathrm{3}\left(\pi+\mathrm{3}\right)} \\ $$$${Mgp}\mathrm{cos}\:\left(\theta+\beta\right)={I}_{\mathrm{0}} \left(\frac{\omega{d}\omega}{{d}\theta}\right) \\ $$$$\omega^{\mathrm{2}} =\mathrm{2}{Mgp}\left\{\mathrm{sin}\:\left(\theta+\beta\right)−\mathrm{sin}\:\beta\right\} \\ $$$${T}=\sqrt{\frac{{I}_{\mathrm{0}} }{\mathrm{2}{Mgp}}}\int_{\mathrm{0}} ^{\:\:\frac{\pi}{\mathrm{2}}−\varphi} \frac{{d}\theta}{\:\sqrt{\mathrm{sin}\:\left(\theta+\beta\right)−\mathrm{sin}\:\beta}} \\ $$$${where}\:\:\varphi=\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{3}} \\ $$$${T}=\sqrt{\frac{{a}\left(\mathrm{36}+\mathrm{13}\pi\right)}{\mathrm{4}\left(\mathrm{3}+\pi\right){g}\sqrt{\left(\frac{\mathrm{4}}{\pi+\mathrm{3}}\right)^{\mathrm{2}} +\mathrm{9}}}}×\int\bigstar \\ $$$$\int\bigstar=\int_{\mathrm{0}} ^{\:\:\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{2}}{\mathrm{3}}} \frac{{d}\theta}{\:\sqrt{\mathrm{sin}\:\left(\theta+\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{3}\left(\pi+\mathrm{3}\right)}\right)−\frac{\mathrm{4}}{\:\sqrt{\mathrm{16}+\mathrm{9}\left(\pi+\mathrm{3}\right)^{\mathrm{2}} }}}} \\ $$$${Sir},\:{please}\:\:{check}\:\:{the}\:{answer}\:{this} \\ $$$${yields}\:\:{with}\:{yours}..{i}\:{will}\:{try}\:{too}.. \\ $$$$ \\ $$$$ \\ $$

Commented by mr W last updated on 04/Jan/22

i got with your formula T≈1.3626(√(R/g))  that differs from my result.

$${i}\:{got}\:{with}\:{your}\:{formula}\:{T}\approx\mathrm{1}.\mathrm{3626}\sqrt{\frac{{R}}{{g}}} \\ $$$${that}\:{differs}\:{from}\:{my}\:{result}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com