Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 163100 by HongKing last updated on 03/Jan/22

Answered by mr W last updated on 04/Jan/22

Commented by mr W last updated on 04/Jan/22

say the three equilateral triangles  have side lengthes a,b,c.   a=b+c  ΔBCL=ΔBCA  [BCL]=[ABC]=(((√3)a^2 )/4)  LE=a−b  LF=a−c  [LEF]=(((a−b)(a−c)sin 60°)/2)=(((√3)(a−b)(a−c))/4)  [BEFC]=[BCL]−[LEF]          =((√3)/4)[a^2 −(a−b)(a−c)]          =((√3)/4)[(b+c)^2 −cb]          =((√3)/4)(b^2 +c^2 +bc)  DJ=(2/3)×(((√3)b)/2)=(((√3)b)/3)  DK=(2/3)×(((√3)c)/2)=(((√3)c)/3)  ∠JDK=120°  side length of ΔIJK=s  s^2 =((((√3)b)/3))^2 +((((√3)c)/3))^2 +2((((√3)b)/3))((((√3)c)/3))(1/2)  s^2 =((b^2 +c^2 +bc)/3)  [IJK]=(((√3)s^2 )/4)=(1/3)×(((√3)(b^2 +c^2 +bc))/4)=(([BEFC])/3)  ⇒[BEFC]=3[IJK] ✓    note: ΔIJK is also equilateral. this  can be easily proved, maybe   somewhere else later.

$${say}\:{the}\:{three}\:{equilateral}\:{triangles} \\ $$$${have}\:{side}\:{lengthes}\:{a},{b},{c}.\: \\ $$$${a}={b}+{c} \\ $$$$\Delta{BCL}=\Delta{BCA} \\ $$$$\left[{BCL}\right]=\left[{ABC}\right]=\frac{\sqrt{\mathrm{3}}{a}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${LE}={a}−{b} \\ $$$${LF}={a}−{c} \\ $$$$\left[{LEF}\right]=\frac{\left({a}−{b}\right)\left({a}−{c}\right)\mathrm{sin}\:\mathrm{60}°}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}\left({a}−{b}\right)\left({a}−{c}\right)}{\mathrm{4}} \\ $$$$\left[{BEFC}\right]=\left[{BCL}\right]−\left[{LEF}\right] \\ $$$$\:\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\left[{a}^{\mathrm{2}} −\left({a}−{b}\right)\left({a}−{c}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\left[\left({b}+{c}\right)^{\mathrm{2}} −{cb}\right] \\ $$$$\:\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{bc}\right) \\ $$$${DJ}=\frac{\mathrm{2}}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}{b}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}{b}}{\mathrm{3}} \\ $$$${DK}=\frac{\mathrm{2}}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}{c}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}{c}}{\mathrm{3}} \\ $$$$\angle{JDK}=\mathrm{120}° \\ $$$${side}\:{length}\:{of}\:\Delta{IJK}={s} \\ $$$${s}^{\mathrm{2}} =\left(\frac{\sqrt{\mathrm{3}}{b}}{\mathrm{3}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}{c}}{\mathrm{3}}\right)^{\mathrm{2}} +\mathrm{2}\left(\frac{\sqrt{\mathrm{3}}{b}}{\mathrm{3}}\right)\left(\frac{\sqrt{\mathrm{3}}{c}}{\mathrm{3}}\right)\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${s}^{\mathrm{2}} =\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{bc}}{\mathrm{3}} \\ $$$$\left[{IJK}\right]=\frac{\sqrt{\mathrm{3}}{s}^{\mathrm{2}} }{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{bc}\right)}{\mathrm{4}}=\frac{\left[{BEFC}\right]}{\mathrm{3}} \\ $$$$\Rightarrow\left[{BEFC}\right]=\mathrm{3}\left[{IJK}\right]\:\checkmark \\ $$$$ \\ $$$${note}:\:\Delta{IJK}\:{is}\:{also}\:{equilateral}.\:{this} \\ $$$${can}\:{be}\:{easily}\:{proved},\:{maybe}\: \\ $$$${somewhere}\:{else}\:{later}. \\ $$

Commented by mr W last updated on 04/Jan/22

Commented by Tawa11 last updated on 04/Jan/22

Wow great sir.

$$\mathrm{Wow}\:\mathrm{great}\:\mathrm{sir}. \\ $$

Commented by mr W last updated on 04/Jan/22

here the proof:  BJ=(2/3)×(((√3)b)/2)=(((√3)b)/3)  BI=(2/3)×(((√3)a)/2)=(((√3)a)/3)  ∠JBI=60°  IJ^2 =((((√3)b)/3))^2 +((((√3)a)/3))^2 −2((((√3)b)/3))((((√3)a)/3))(1/2)      =((a^2 +b^2 −ab)/3)      =(((b+c)^2 +b^2 −(b+c)b)/3)      =((b^2 +c^2 +bc)/3)=JK^2 =s^2   similarly  IK^2 =((b^2 +c^2 +bc)/3)=JK^2 =s^2   ⇒IJ=IK=JK=s=(√((b^2 +c^2 +bc)/3))  ⇒ΔIJK is equilateral

$${here}\:{the}\:{proof}: \\ $$$${BJ}=\frac{\mathrm{2}}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}{b}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}{b}}{\mathrm{3}} \\ $$$${BI}=\frac{\mathrm{2}}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{3}} \\ $$$$\angle{JBI}=\mathrm{60}° \\ $$$${IJ}^{\mathrm{2}} =\left(\frac{\sqrt{\mathrm{3}}{b}}{\mathrm{3}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{3}}\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{\sqrt{\mathrm{3}}{b}}{\mathrm{3}}\right)\left(\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{3}}\right)\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:\:=\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{ab}}{\mathrm{3}} \\ $$$$\:\:\:\:=\frac{\left({b}+{c}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} −\left({b}+{c}\right){b}}{\mathrm{3}} \\ $$$$\:\:\:\:=\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{bc}}{\mathrm{3}}={JK}^{\mathrm{2}} ={s}^{\mathrm{2}} \\ $$$${similarly} \\ $$$${IK}^{\mathrm{2}} =\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{bc}}{\mathrm{3}}={JK}^{\mathrm{2}} ={s}^{\mathrm{2}} \\ $$$$\Rightarrow{IJ}={IK}={JK}={s}=\sqrt{\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{bc}}{\mathrm{3}}} \\ $$$$\Rightarrow\Delta{IJK}\:{is}\:{equilateral} \\ $$

Commented by HongKing last updated on 04/Jan/22

perfect solution my dear Sir thank you so much

$$\mathrm{perfect}\:\mathrm{solution}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com