Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 163109 by mathmax by abdo last updated on 03/Jan/22

find the value of ∫_(−∞) ^(+∞)  ((cosx)/((x^2 +1)^n ))dx     (n fromN and n≥1)

findthevalueof+cosx(x2+1)ndx(nfromNandn1)

Answered by mathmax by abdo last updated on 05/Jan/22

A_n =Re(∫_(−∞) ^(+∞)  (e^(ix) /((x^2 +1)^n ))dx) let Ψ(z)=(e^(iz) /((z^2 +1)^n )) ⇒  Ψ(z)=(e^(iz) /((z−i)^n (z+i)^n ))  the poles of Ψ are i and −i(ordre=n)  ∫_R Ψ(z)dz =2iπ Res(Ψ,i)  Res(Ψ,i)=lim_(z→i) (1/((n−1)!)){(z−i)^n Ψ(z)}^()n−1))   =(1/((n−1)!))lim_(z→i)   {(z+i)^(−n)  e^(iz) }^((n−1))   =(1/((n−1)!))lim_(z→i)    Σ_(k=0) ^(n−1)   C_(n−1) ^k {(z+i)^(−n) }^((k))  (e^(iz) )^((n−1−k))   we have (e^(iz) )^((n−1−k)) =i^(n−1−k)  e^(iz)   let find (z+i)^p }^((k))   (z+i)^p }^((1)) =p(z+i)^(p−1)     (z+i)^p }^((2)) =p(p−1)(z+i)^(p−2)  ⇒by recurrence  (z+i)^p }^((k)) =p(p−1)....(p−k+1)(z+i)^(p−k)  ⇒  {(z+i)^(−n) }^((k))  =(−n)(−n−1)....(−n−k+1)(z+i)^(−n−k)   =(−1)^k n(n+1)...(n+k−1)(z+i)^(−n−k)  ⇒  Res(Ψ,i)=(1/((n−1)!)) e^(−1)  Σ_(k=0) ^(n−1) C_(n−1) ^k i^(n−1−k) (−1)^k n(n+1)...(n+k−1)(2i)^(−n−k)   =(1/((n−1)!))e^(−1) Σ_(k=0) ^(n−1)  C_(n−1) ^k  ((i^(n−1−k) (−1)^k n(n+1)....(n+k−1)i^(−n−k) )/(2^(n+k)  ))  =(e^(−1) /(2^n (n−1)!))Σ_(k=0) ^(n−1)  C_(n−1) ^k  (−i)(−1)^(2k) ((n(n+1)....(n+k−1))/2^k ) ⇒  ∫_R Ψ(z)dz =((2πe^(−1) )/(2^n (n−1)!))Σ_(k=0) ^(n−1)  ((n(n+1)...(n+k−1))/2^k )×C_n ^k   =Re(∫....)=∫_(−∞) ^(+∞)  ((cosx)/((x^2  +1)^n ))dx

An=Re(+eix(x2+1)ndx)letΨ(z)=eiz(z2+1)nΨ(z)=eiz(zi)n(z+i)nthepolesofΨareiandi(ordre=n)RΨ(z)dz=2iπRes(Ψ,i)Res(Ψ,i)=limzi1(n1)!{(zi)nΨ(z)})n1)=1(n1)!limzi{(z+i)neiz}(n1)=1(n1)!limzik=0n1Cn1k{(z+i)n}(k)(eiz)(n1k)wehave(eiz)(n1k)=in1keizletfind(z+i)p}(k)(z+i)p}(1)=p(z+i)p1(z+i)p}(2)=p(p1)(z+i)p2byrecurrence(z+i)p}(k)=p(p1)....(pk+1)(z+i)pk{(z+i)n}(k)=(n)(n1)....(nk+1)(z+i)nk=(1)kn(n+1)...(n+k1)(z+i)nkRes(Ψ,i)=1(n1)!e1k=0n1Cn1kin1k(1)kn(n+1)...(n+k1)(2i)nk=1(n1)!e1k=0n1Cn1kin1k(1)kn(n+1)....(n+k1)ink2n+k=e12n(n1)!k=0n1Cn1k(i)(1)2kn(n+1)....(n+k1)2kRΨ(z)dz=2πe12n(n1)!k=0n1n(n+1)...(n+k1)2k×Cnk=Re(....)=+cosx(x2+1)ndx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com