Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 163120 by ZiYangLee last updated on 04/Jan/22

Answered by Rasheed.Sindhi last updated on 04/Jan/22

a_1 =7, a_n =((12a_(n−1) )/(37−(a_(n−1) )^2 )) for n≥2  S=a_1 +2a_2 +3a_3 +∙∙∙+2020a_(2020)   Sum odigits of S=?  ⌣⌢⌣⌢⌣⌢⌣⌢⌣⌢⌣⌢⌣⌢⌣  a_1 =7  a_2 =((12a_1 )/(37−(a_1 )^2 ))=((12∙7)/(37−7^2 ))=−7  a_3 =((12a_2 )/(37−(a_2 )^2 ))=((12(−7))/(37−(−7)^2 ))=7   determinant (((n∈O : a_n =7_(         n∈E: a_n =−7^() ) )))   S=a_1 +2a_2 +3a_3 +∙∙∙+2020a_(2020)       =7+2(−7)+3(7)+4(−7)+...+2019(7)+2020(−7)  =7(1−2+3−4+...+2019−2020)  =7{(1+3+5+...+2019)−(2+4+6+...+2020)}  =7{((1010)/2)(1+2019)−((1010)/2)(2+2020)}  =7∙505(2020−2022)=−7∙505∙2  =−7070  Sum of S  7+0+7+0=14

$${a}_{\mathrm{1}} =\mathrm{7},\:{a}_{{n}} =\frac{\mathrm{12}{a}_{{n}−\mathrm{1}} }{\mathrm{37}−\left({a}_{{n}−\mathrm{1}} \right)^{\mathrm{2}} }\:{for}\:{n}\geqslant\mathrm{2} \\ $$$${S}={a}_{\mathrm{1}} +\mathrm{2}{a}_{\mathrm{2}} +\mathrm{3}{a}_{\mathrm{3}} +\centerdot\centerdot\centerdot+\mathrm{2020}{a}_{\mathrm{2020}} \\ $$$${Sum}\:{odigits}\:{of}\:{S}=? \\ $$$$\smile\frown\smile\frown\smile\frown\smile\frown\smile\frown\smile\frown\smile\frown\smile \\ $$$${a}_{\mathrm{1}} =\mathrm{7} \\ $$$${a}_{\mathrm{2}} =\frac{\mathrm{12}{a}_{\mathrm{1}} }{\mathrm{37}−\left({a}_{\mathrm{1}} \right)^{\mathrm{2}} }=\frac{\mathrm{12}\centerdot\mathrm{7}}{\mathrm{37}−\mathrm{7}^{\mathrm{2}} }=−\mathrm{7} \\ $$$${a}_{\mathrm{3}} =\frac{\mathrm{12}{a}_{\mathrm{2}} }{\mathrm{37}−\left({a}_{\mathrm{2}} \right)^{\mathrm{2}} }=\frac{\mathrm{12}\left(−\mathrm{7}\right)}{\mathrm{37}−\left(−\mathrm{7}\right)^{\mathrm{2}} }=\mathrm{7} \\ $$$$\begin{array}{|c|}{\underset{\:\:\:\:\:\:\:\:\:\overset{} {{n}\in\mathbb{E}:\:{a}_{{n}} =−\mathrm{7}}} {{n}\in\mathbb{O}\::\:{a}_{{n}} =\mathrm{7}}}\\\hline\end{array}\: \\ $$$${S}={a}_{\mathrm{1}} +\mathrm{2}{a}_{\mathrm{2}} +\mathrm{3}{a}_{\mathrm{3}} +\centerdot\centerdot\centerdot+\mathrm{2020}{a}_{\mathrm{2020}} \\ $$$$\:\:\:\:=\mathrm{7}+\mathrm{2}\left(−\mathrm{7}\right)+\mathrm{3}\left(\mathrm{7}\right)+\mathrm{4}\left(−\mathrm{7}\right)+...+\mathrm{2019}\left(\mathrm{7}\right)+\mathrm{2020}\left(−\mathrm{7}\right) \\ $$$$=\mathrm{7}\left(\mathrm{1}−\mathrm{2}+\mathrm{3}−\mathrm{4}+...+\mathrm{2019}−\mathrm{2020}\right) \\ $$$$=\mathrm{7}\left\{\left(\mathrm{1}+\mathrm{3}+\mathrm{5}+...+\mathrm{2019}\right)−\left(\mathrm{2}+\mathrm{4}+\mathrm{6}+...+\mathrm{2020}\right)\right\} \\ $$$$=\mathrm{7}\left\{\frac{\mathrm{1010}}{\mathrm{2}}\left(\mathrm{1}+\mathrm{2019}\right)−\frac{\mathrm{1010}}{\mathrm{2}}\left(\mathrm{2}+\mathrm{2020}\right)\right\} \\ $$$$=\mathrm{7}\centerdot\mathrm{505}\left(\mathrm{2020}−\mathrm{2022}\right)=−\mathrm{7}\centerdot\mathrm{505}\centerdot\mathrm{2} \\ $$$$=−\mathrm{7070} \\ $$$${Sum}\:{of}\:{S}\:\:\mathrm{7}+\mathrm{0}+\mathrm{7}+\mathrm{0}=\mathrm{14} \\ $$

Commented by Tawa11 last updated on 04/Jan/22

Great sir.

$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Commented by Rasheed.Sindhi last updated on 04/Jan/22

THANX  MISS!

$$\mathcal{THANX}\:\:\mathcal{MISS}! \\ $$

Commented by mr W last updated on 04/Jan/22

nice!

$${nice}! \\ $$

Commented by Rasheed.Sindhi last updated on 04/Jan/22

THANKS  SIR!

$$\mathcal{THANKS}\:\:\mathcal{SIR}! \\ $$

Commented by mr W last updated on 04/Jan/22

what if a_1 =1 instead of a_1 =7?  can we find a_n =?

$${what}\:{if}\:{a}_{\mathrm{1}} =\mathrm{1}\:{instead}\:{of}\:{a}_{\mathrm{1}} =\mathrm{7}? \\ $$$${can}\:{we}\:{find}\:{a}_{{n}} =? \\ $$

Commented by Rasheed.Sindhi last updated on 05/Jan/22

a_1 =1 ; a_n =((12a_(n−1) )/(37−(a_(n−1) )^2 ))  a_2 =((12.1)/(37−(1)^2 ))=(1/3)  a_3 =((12.(1/3))/(37−((1/3))^2 ))=(4/((333−1)/9))=4.(9/(332))=(9/(83))  a_4 =((12.(9/(83)))/(37−((81)/(6889))))=....  Sir this is not so easy.I think we must  first solve the given recurrence  relation and obtain an expression  for a_n  in terms of n.I′ll try but not  much confident!  begin:Thanks ;  goto begin

$${a}_{\mathrm{1}} =\mathrm{1}\:;\:{a}_{{n}} =\frac{\mathrm{12}{a}_{{n}−\mathrm{1}} }{\mathrm{37}−\left({a}_{{n}−\mathrm{1}} \right)^{\mathrm{2}} } \\ $$$${a}_{\mathrm{2}} =\frac{\mathrm{12}.\mathrm{1}}{\mathrm{37}−\left(\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${a}_{\mathrm{3}} =\frac{\mathrm{12}.\frac{\mathrm{1}}{\mathrm{3}}}{\mathrm{37}−\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} }=\frac{\mathrm{4}}{\frac{\mathrm{333}−\mathrm{1}}{\mathrm{9}}}=\mathrm{4}.\frac{\mathrm{9}}{\mathrm{332}}=\frac{\mathrm{9}}{\mathrm{83}} \\ $$$${a}_{\mathrm{4}} =\frac{\mathrm{12}.\frac{\mathrm{9}}{\mathrm{83}}}{\mathrm{37}−\frac{\mathrm{81}}{\mathrm{6889}}}=.... \\ $$$${Sir}\:{this}\:{is}\:{not}\:{so}\:{easy}.{I}\:{think}\:{we}\:{must} \\ $$$${first}\:{solve}\:{the}\:{given}\:{recurrence} \\ $$$${relation}\:{and}\:{obtain}\:{an}\:{expression} \\ $$$${for}\:{a}_{{n}} \:{in}\:{terms}\:{of}\:{n}.{I}'{ll}\:{try}\:{but}\:{not} \\ $$$${much}\:{confident}! \\ $$$${begin}:\mathbb{T}\mathrm{han}\Bbbk\mathrm{s}\:;\:\:{goto}\:{begin} \\ $$

Commented by mr W last updated on 05/Jan/22

indeed not so easy. let′s try if we can  solve for a_n  in terms of n.

$${indeed}\:{not}\:{so}\:{easy}.\:{let}'{s}\:{try}\:{if}\:{we}\:{can} \\ $$$${solve}\:{for}\:{a}_{{n}} \:{in}\:{terms}\:{of}\:{n}. \\ $$

Commented by Rasheed.Sindhi last updated on 05/Jan/22

The question doesn′t behave so easy  for any value other than a_1 =7  Is there any other value of a_1  for  which a_n  behaves periodic?

$$\mathcal{T}{he}\:{question}\:{doesn}'{t}\:{behave}\:{so}\:{easy} \\ $$$${for}\:{any}\:{value}\:{other}\:{than}\:{a}_{\mathrm{1}} =\mathrm{7} \\ $$$${Is}\:{there}\:{any}\:{other}\:{value}\:{of}\:{a}_{\mathrm{1}} \:{for} \\ $$$${which}\:{a}_{{n}} \:{behaves}\:{periodic}? \\ $$

Commented by mr W last updated on 05/Jan/22

a_n =((12a_(n−1) )/(37−(a_(n−1) )^2 )) ⇒y=((12x)/(37−x^2 ))  if you wish x→−x, it means  −x=((12x)/(37−x^2 ))  x^2 −37=12 ⇒x^2 =49 ⇒x=±7  i.e. a_1 =7 or −7. we get e.g.  7,−7,7,−7, ...  if you wish x→x, it means  x=((12x)/(37−x^2 ))  ⇒x^2 =25 ⇒x=±5  i.e. a_1 =5 or −5. we get e.g.  5, 5, 5, 5, ...

$${a}_{{n}} =\frac{\mathrm{12}{a}_{{n}−\mathrm{1}} }{\mathrm{37}−\left({a}_{{n}−\mathrm{1}} \right)^{\mathrm{2}} }\:\Rightarrow{y}=\frac{\mathrm{12}{x}}{\mathrm{37}−{x}^{\mathrm{2}} } \\ $$$${if}\:{you}\:{wish}\:{x}\rightarrow−{x},\:{it}\:{means} \\ $$$$−{x}=\frac{\mathrm{12}{x}}{\mathrm{37}−{x}^{\mathrm{2}} } \\ $$$${x}^{\mathrm{2}} −\mathrm{37}=\mathrm{12}\:\Rightarrow{x}^{\mathrm{2}} =\mathrm{49}\:\Rightarrow{x}=\pm\mathrm{7} \\ $$$${i}.{e}.\:{a}_{\mathrm{1}} =\mathrm{7}\:{or}\:−\mathrm{7}.\:{we}\:{get}\:{e}.{g}. \\ $$$$\mathrm{7},−\mathrm{7},\mathrm{7},−\mathrm{7},\:... \\ $$$${if}\:{you}\:{wish}\:{x}\rightarrow{x},\:{it}\:{means} \\ $$$${x}=\frac{\mathrm{12}{x}}{\mathrm{37}−{x}^{\mathrm{2}} } \\ $$$$\Rightarrow{x}^{\mathrm{2}} =\mathrm{25}\:\Rightarrow{x}=\pm\mathrm{5} \\ $$$${i}.{e}.\:{a}_{\mathrm{1}} =\mathrm{5}\:{or}\:−\mathrm{5}.\:{we}\:{get}\:{e}.{g}. \\ $$$$\mathrm{5},\:\mathrm{5},\:\mathrm{5},\:\mathrm{5},\:... \\ $$

Commented by Rasheed.Sindhi last updated on 05/Jan/22

Sir, you′re deep in maths and hence  particularly in this question also!  Thanks from my deep heart!

$$\mathbb{S}\mathrm{ir},\:\mathrm{you}'\mathrm{re}\:\mathrm{deep}\:\mathrm{in}\:\mathrm{maths}\:\mathrm{and}\:\mathrm{hence} \\ $$$$\mathrm{particularly}\:\mathrm{in}\:\mathrm{this}\:\mathrm{question}\:\mathrm{also}! \\ $$$$\mathcal{T}{hanks}\:{from}\:{my}\:{deep}\:{heart}! \\ $$

Commented by mr W last updated on 05/Jan/22

thanks!

$${thanks}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com