All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 163144 by HongKing last updated on 04/Jan/22
Find:Ω=∫10π4−arctan(x)1−xdx
Answered by mnjuly1970 last updated on 04/Jan/22
−−−solutionΩ=∫01artan(1−x1+x)1−xdx1−x1+x=t⇒dx=−2(1+t)2dtΩ=2∫01(arctan(t)2t(1+t)dt=2∫01{arctan(t)t−arctan(t)1+t}dtΦ=∫01arctan(t)tdt,Ψ=∫01arctan(t)1+tdtΦ=∫01∑∞n=0(−1)nt2n2n+1dt=G=β(2)Ψ=[ln(1+t).arctan(t)]01−∫01ln(1+t)1+t2=π8ln(2)Ω=2G−π4ln(2)◼m.n
Commented by HongKing last updated on 04/Jan/22
perfectsolutionmydearSir,thankyousomuch
Commented by mnjuly1970 last updated on 04/Jan/22
haveanicetimesir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com