Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 163144 by HongKing last updated on 04/Jan/22

Find:   𝛀 = ∫_( 0) ^( 1)  (((π/4) - arctan(x))/(1 - x)) dx

$$\mathrm{Find}:\:\:\:\boldsymbol{\Omega}\:=\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\frac{\pi}{\mathrm{4}}\:-\:\mathrm{arctan}\left(\mathrm{x}\right)}{\mathrm{1}\:-\:\mathrm{x}}\:\mathrm{dx} \\ $$

Answered by mnjuly1970 last updated on 04/Jan/22

−−−     solution      Ω= ∫_0 ^( 1) (( artan(((1−x)/(1+x))))/(1−x)) dx        ((1−x)/(1+x )) = t ⇒ dx= ((−2)/((1+t )^( 2) ))dt       Ω = 2∫_0 ^( 1)  (( (arctan( t ))/(2t(1+t ))) dt             =2 ∫_0 ^( 1) {(( arctan(t ))/t) −((arctan(t))/(1+t)) }dt            Φ= ∫_0 ^( 1) (( arctan(t))/t) dt  , Ψ =∫_0 ^( 1) ((arctan(t))/(1+t))dt      Φ= ∫_0 ^( 1)  Σ_(n=0) ^∞ (( (−1)^( n) t^( 2n) )/(2n+1))dt = G=β(2)          Ψ = [ ln(1+t).arctan(t)]_0 ^1 −∫_0 ^( 1) ((ln(1+ t))/(1+t^( 2) ))                 = (π/8) ln(2)             Ω=  2G − (π/4) ln(2)        ■ m.n

$$−−− \\ $$$$\:\:\:{solution} \\ $$$$\:\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{artan}\left(\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\right)}{\mathrm{1}−{x}}\:{dx} \\ $$$$\:\:\:\:\:\:\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}\:}\:=\:{t}\:\Rightarrow\:{dx}=\:\frac{−\mathrm{2}}{\left(\mathrm{1}+{t}\:\right)^{\:\mathrm{2}} }{dt} \\ $$$$\:\:\:\:\:\Omega\:=\:\mathrm{2}\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\:\left({arctan}\left(\:{t}\:\right)\right.}{\mathrm{2}{t}\left(\mathrm{1}+{t}\:\right)}\:{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{\frac{\:{arctan}\left({t}\:\right)}{{t}}\:−\frac{{arctan}\left({t}\right)}{\mathrm{1}+{t}}\:\right\}{dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\Phi=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{arctan}\left({t}\right)}{{t}}\:{dt}\:\:,\:\Psi\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{arctan}\left({t}\right)}{\mathrm{1}+{t}}{dt} \\ $$$$\:\:\:\:\Phi=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\:\left(−\mathrm{1}\right)^{\:{n}} {t}^{\:\mathrm{2}{n}} }{\mathrm{2}{n}+\mathrm{1}}{dt}\:=\:\mathrm{G}=\beta\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\Psi\:=\:\left[\:{ln}\left(\mathrm{1}+{t}\right).{arctan}\left({t}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}+\:{t}\right)}{\mathrm{1}+{t}^{\:\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\pi}{\mathrm{8}}\:{ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Omega=\:\:\mathrm{2G}\:−\:\frac{\pi}{\mathrm{4}}\:{ln}\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$ \\ $$$$ \\ $$

Commented by HongKing last updated on 04/Jan/22

perfect solution my dear Sir,thank you so much

$$\mathrm{perfect}\:\mathrm{solution}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir},\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Commented by mnjuly1970 last updated on 04/Jan/22

have a nice time sir

$${have}\:{a}\:{nice}\:{time}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com