Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 163288 by HongKing last updated on 05/Jan/22

Answered by Ar Brandon last updated on 05/Jan/22

I=∫_0 ^(π/2) (dx/(1+a^2 tan^2 x))=∫_0 ^(π/2) ((sec^2 x)/(sec^2 x+a^2 tan^2 xsec^2 x))dx     =∫_0 ^∞ (dt/(1+t^2 +a^2 t^2 (1+t^2 )))=∫_0 ^∞ (dt/((t^2 +1)(a^2 t^2 +1)))     =∫_0 ^∞ ((1/(1−a^2 ))∙(1/(t^2 +1))+(a^2 /(a^2 −1))∙(1/(a^2 t^2 +1)))dt     =(1/(1−a^2 ))∙(π/2)+(a^2 /(a^2 −1))∙(1/a)∙(π/2)=((1−a)/(1−a^2 ))∙(π/2)=(π/(2(1+a)))

$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\mathrm{1}+{a}^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} {x}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{sec}^{\mathrm{2}} {x}}{\mathrm{sec}^{\mathrm{2}} {x}+{a}^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} {x}\mathrm{sec}^{\mathrm{2}} {x}}{dx} \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} +{a}^{\mathrm{2}} {t}^{\mathrm{2}} \left(\mathrm{1}+{t}^{\mathrm{2}} \right)}=\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)\left({a}^{\mathrm{2}} {t}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{1}−{a}^{\mathrm{2}} }\centerdot\frac{\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}}+\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} −\mathrm{1}}\centerdot\frac{\mathrm{1}}{{a}^{\mathrm{2}} {t}^{\mathrm{2}} +\mathrm{1}}\right){dt} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{1}−{a}^{\mathrm{2}} }\centerdot\frac{\pi}{\mathrm{2}}+\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} −\mathrm{1}}\centerdot\frac{\mathrm{1}}{{a}}\centerdot\frac{\pi}{\mathrm{2}}=\frac{\mathrm{1}−{a}}{\mathrm{1}−{a}^{\mathrm{2}} }\centerdot\frac{\pi}{\mathrm{2}}=\frac{\pi}{\mathrm{2}\left(\mathrm{1}+{a}\right)} \\ $$

Commented by Ar Brandon last updated on 05/Jan/22

(1/((t^2 +1)(a^2 t^2 +1)))=((pt+q)/(t^2 +1))+((rt+s)/(a^2 t^2 +1))  =(((pt+q)(a^2 t^2 +1)+(rt+s)(t^2 +1))/)  lim_(t→i) =(pi+q)(1−a^2 )=1, p=0 , q=(1/(1−a^2 ))  q+s=1⇒s=1−q=(a^2 /(a^2 −1))  p+r=0⇒r=0

$$\frac{\mathrm{1}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)\left({a}^{\mathrm{2}} {t}^{\mathrm{2}} +\mathrm{1}\right)}=\frac{{pt}+{q}}{{t}^{\mathrm{2}} +\mathrm{1}}+\frac{{rt}+{s}}{{a}^{\mathrm{2}} {t}^{\mathrm{2}} +\mathrm{1}} \\ $$$$=\frac{\left({pt}+{q}\right)\left({a}^{\mathrm{2}} {t}^{\mathrm{2}} +\mathrm{1}\right)+\left({rt}+{s}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)}{} \\ $$$$\underset{{t}\rightarrow{i}} {\mathrm{lim}}=\left({pi}+{q}\right)\left(\mathrm{1}−{a}^{\mathrm{2}} \right)=\mathrm{1},\:{p}=\mathrm{0}\:,\:{q}=\frac{\mathrm{1}}{\mathrm{1}−{a}^{\mathrm{2}} } \\ $$$${q}+{s}=\mathrm{1}\Rightarrow{s}=\mathrm{1}−{q}=\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} −\mathrm{1}} \\ $$$${p}+{r}=\mathrm{0}\Rightarrow{r}=\mathrm{0} \\ $$

Commented by HongKing last updated on 05/Jan/22

perfect solution my dear Sir thank you

$$\mathrm{perfect}\:\mathrm{solution}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you} \\ $$

Commented by peter frank last updated on 06/Jan/22

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com