Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 163313 by SLVR last updated on 06/Jan/22

Find the non negative integer  solutions of 2x+3y+5z=60

$${Find}\:{the}\:{non}\:{negative}\:{integer} \\ $$$${solutions}\:{of}\:\mathrm{2}{x}+\mathrm{3}{y}+\mathrm{5}{z}=\mathrm{60} \\ $$

Answered by mr W last updated on 06/Jan/22

let 2x+3y=5u  5u+5z=60  u+z=12  ⇒u=n with n ∈ Z  ⇒z=12−n    2x+3y=1  x=3k−1 with k ∈ Z  y=−2k+1  2x+3y=5u=5n  x=5n(3k−1)=3(5nk)−5n=3m−5n  y=5n(−2k+1)=−2(5nk)+5n=−2m+5n    general solution:   { ((x=3m−5n)),((y=−2m+5n)),((z=12−n)) :}     (with m,n∈Z)  non−negative solutions:  z=12−n≥0 ⇒n≤12  x=3m−5n≥0  y=−2m+5n≥0  ⇒0≤n≤12  ⇒((5n)/3)≤m≤((5n)/2)  totally there are 71 solutions:  n=0: m=0  n=1: m=2  n=2: m=3, 4  n=3: m=5, 6, 7  ....  n=12: m=20, 21, ..., 30

$${let}\:\mathrm{2}{x}+\mathrm{3}{y}=\mathrm{5}{u} \\ $$$$\mathrm{5}{u}+\mathrm{5}{z}=\mathrm{60} \\ $$$${u}+{z}=\mathrm{12} \\ $$$$\Rightarrow{u}={n}\:{with}\:{n}\:\in\:\mathbb{Z} \\ $$$$\Rightarrow{z}=\mathrm{12}−{n} \\ $$$$ \\ $$$$\mathrm{2}{x}+\mathrm{3}{y}=\mathrm{1} \\ $$$${x}=\mathrm{3}{k}−\mathrm{1}\:{with}\:{k}\:\in\:\mathbb{Z} \\ $$$${y}=−\mathrm{2}{k}+\mathrm{1} \\ $$$$\mathrm{2}{x}+\mathrm{3}{y}=\mathrm{5}{u}=\mathrm{5}{n} \\ $$$${x}=\mathrm{5}{n}\left(\mathrm{3}{k}−\mathrm{1}\right)=\mathrm{3}\left(\mathrm{5}{nk}\right)−\mathrm{5}{n}=\mathrm{3}{m}−\mathrm{5}{n} \\ $$$${y}=\mathrm{5}{n}\left(−\mathrm{2}{k}+\mathrm{1}\right)=−\mathrm{2}\left(\mathrm{5}{nk}\right)+\mathrm{5}{n}=−\mathrm{2}{m}+\mathrm{5}{n} \\ $$$$ \\ $$$${general}\:{solution}: \\ $$$$\begin{cases}{{x}=\mathrm{3}{m}−\mathrm{5}{n}}\\{{y}=−\mathrm{2}{m}+\mathrm{5}{n}}\\{{z}=\mathrm{12}−{n}}\end{cases}\:\:\:\:\:\left({with}\:{m},{n}\in\mathbb{Z}\right) \\ $$$${non}−{negative}\:{solutions}: \\ $$$${z}=\mathrm{12}−{n}\geqslant\mathrm{0}\:\Rightarrow{n}\leqslant\mathrm{12} \\ $$$${x}=\mathrm{3}{m}−\mathrm{5}{n}\geqslant\mathrm{0} \\ $$$${y}=−\mathrm{2}{m}+\mathrm{5}{n}\geqslant\mathrm{0} \\ $$$$\Rightarrow\mathrm{0}\leqslant{n}\leqslant\mathrm{12} \\ $$$$\Rightarrow\frac{\mathrm{5}{n}}{\mathrm{3}}\leqslant{m}\leqslant\frac{\mathrm{5}{n}}{\mathrm{2}} \\ $$$${totally}\:{there}\:{are}\:\mathrm{71}\:{solutions}: \\ $$$${n}=\mathrm{0}:\:{m}=\mathrm{0} \\ $$$${n}=\mathrm{1}:\:{m}=\mathrm{2} \\ $$$${n}=\mathrm{2}:\:{m}=\mathrm{3},\:\mathrm{4} \\ $$$${n}=\mathrm{3}:\:{m}=\mathrm{5},\:\mathrm{6},\:\mathrm{7} \\ $$$$.... \\ $$$${n}=\mathrm{12}:\:{m}=\mathrm{20},\:\mathrm{21},\:...,\:\mathrm{30} \\ $$

Commented by SLVR last updated on 06/Jan/22

Wow...really great enough..we  are blessed...with your service

$${Wow}...{really}\:{great}\:{enough}..{we} \\ $$$${are}\:{blessed}...{with}\:{your}\:{service} \\ $$

Commented by mr W last updated on 06/Jan/22

Commented by mr W last updated on 06/Jan/22

note:  number of non negative solutions of  2x+3y+5z=60 is the coef. of term x^(60)   in the expansion of   (1+x^2 +x^4 +...)(1+x^3 +x^6 +...)(1+x^5 +x^(10) +...)  =(1/((1−x^2 )(1−x^3 )(1−x^5 ))). that is 71.

$$\underline{{note}:} \\ $$$${number}\:{of}\:{non}\:{negative}\:{solutions}\:{of} \\ $$$$\mathrm{2}{x}+\mathrm{3}{y}+\mathrm{5}{z}=\mathrm{60}\:{is}\:{the}\:{coef}.\:{of}\:{term}\:{x}^{\mathrm{60}} \\ $$$${in}\:{the}\:{expansion}\:{of}\: \\ $$$$\left(\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} +...\right)\left(\mathrm{1}+{x}^{\mathrm{3}} +{x}^{\mathrm{6}} +...\right)\left(\mathrm{1}+{x}^{\mathrm{5}} +{x}^{\mathrm{10}} +...\right) \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}^{\mathrm{3}} \right)\left(\mathrm{1}−{x}^{\mathrm{5}} \right)}.\:{that}\:{is}\:\mathrm{71}. \\ $$

Commented by mr W last updated on 06/Jan/22

Commented by Rasheed.Sindhi last updated on 06/Jan/22

M RE _(THAN_(P∈RF∈⊂T  !) )   Multimedia(graph)  & number of solutions    are  in addition!  ThanX sir!

$$\underset{\underset{\mathcal{P}\in\mathcal{RF}\in\subset\mathcal{T}\:\:!} {\mathrm{THAN}}} {\mathcal{M} \mathcal{RE}\:} \\ $$$$\mathbb{M}\mathrm{ultimedia}\left(\mathrm{graph}\right) \\ $$$$\&\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\: \\ $$$$\:\mathrm{are}\:\:\mathrm{in}\:\mathrm{addition}! \\ $$$$\mathcal{T}{han}\mathcal{X}\:\boldsymbol{{sir}}! \\ $$

Commented by mr W last updated on 06/Jan/22

thanks sirs!  graph helps very much to find out if   errors are made. therefore i like to   work with graph.

$${thanks}\:{sirs}! \\ $$$${graph}\:{helps}\:{very}\:{much}\:{to}\:{find}\:{out}\:{if}\: \\ $$$${errors}\:{are}\:{made}.\:{therefore}\:{i}\:{like}\:{to}\: \\ $$$${work}\:{with}\:{graph}. \\ $$

Commented by Tawa11 last updated on 06/Jan/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Commented by Rasheed.Sindhi last updated on 07/Jan/22

SHARING: https://youtu.be/fw1kRz83Fj0

Commented by SLVR last updated on 31/Jan/22

Respected prof.W...evaluation  of x^(60)  with out original mul  tlication all terms complnent  wise..kindly  with general  term of expansion.please

$${Respected}\:{prof}.{W}...{evaluation} \\ $$$${of}\:{x}^{\mathrm{60}} \:{with}\:{out}\:{original}\:{mul} \\ $$$${tlication}\:{all}\:{terms}\:{complnent} \\ $$$${wise}..{kindly}\:\:{with}\:{general} \\ $$$${term}\:{of}\:{expansion}.{please} \\ $$

Commented by mr W last updated on 31/Jan/22

please express clearly what you want  to have!

$${please}\:{express}\:{clearly}\:{what}\:{you}\:{want} \\ $$$${to}\:{have}! \\ $$

Commented by SLVR last updated on 02/Feb/22

Sir...I mean to say ..  coeffitient of x^(60)  in (1−x^2 )(1−x^3 )(1−x^5 )  not by multiplying all terms  but possibility of general term of(1−x)^(−1)   C_r ^(n+r−1)  ... Or getting the coeffitient  of x^(60)   as 71 in a easy way???  Please..sir...

$${Sir}...{I}\:{mean}\:{to}\:{say}\:.. \\ $$$${coeffitient}\:{of}\:{x}^{\mathrm{60}} \:{in}\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}−{x}^{\mathrm{3}} \right)\left(\mathrm{1}−{x}^{\mathrm{5}} \right) \\ $$$${not}\:{by}\:{multiplying}\:{all}\:{terms} \\ $$$${but}\:{possibility}\:{of}\:{general}\:{term}\:{of}\left(\mathrm{1}−{x}\right)^{−\mathrm{1}} \\ $$$${C}_{{r}} ^{{n}+{r}−\mathrm{1}} \:...\:{Or}\:{getting}\:{the}\:{coeffitient} \\ $$$${of}\:{x}^{\mathrm{60}} \:\:{as}\:\mathrm{71}\:{in}\:{a}\:{easy}\:{way}??? \\ $$$${Please}..{sir}... \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by mr W last updated on 02/Feb/22

in fact there is no easy way to   determine the coefficient of a   general term.

$${in}\:{fact}\:{there}\:{is}\:{no}\:{easy}\:{way}\:{to}\: \\ $$$${determine}\:{the}\:{coefficient}\:{of}\:{a}\: \\ $$$${general}\:{term}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com