Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 163324 by ZiYangLee last updated on 06/Jan/22

Given that {a_n } is a geometric sequence  where the first term, a_1 >1 and the common  ratio, r>0.   If b_n =log_2  a_n  where n∈N, b_1 +b_3 +b_5 =6,  and b_1 ∙b_3 ∙b_5 =0, find the general term of {a_n }.

$$\mathrm{Given}\:\mathrm{that}\:\left\{{a}_{{n}} \right\}\:\mathrm{is}\:\mathrm{a}\:\mathrm{geometric}\:\mathrm{sequence} \\ $$ $$\mathrm{where}\:\mathrm{the}\:\mathrm{first}\:\mathrm{term},\:{a}_{\mathrm{1}} >\mathrm{1}\:\mathrm{and}\:\mathrm{the}\:\mathrm{common} \\ $$ $$\mathrm{ratio},\:{r}>\mathrm{0}.\: \\ $$ $$\mathrm{If}\:{b}_{{n}} =\mathrm{log}_{\mathrm{2}} \:{a}_{{n}} \:\mathrm{where}\:{n}\in\mathbb{N},\:{b}_{\mathrm{1}} +{b}_{\mathrm{3}} +{b}_{\mathrm{5}} =\mathrm{6}, \\ $$ $$\mathrm{and}\:{b}_{\mathrm{1}} \centerdot{b}_{\mathrm{3}} \centerdot{b}_{\mathrm{5}} =\mathrm{0},\:\mathrm{find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{term}\:\mathrm{of}\:\left\{{a}_{{n}} \right\}. \\ $$

Answered by mr W last updated on 06/Jan/22

a_n =a_1 r^(n−1)   b_n =log_2  a_n =log_2  (a_1 r^(n−1) )=log_2  a_1 +(n−1)log_2  r  let α=log_2  a_1 ≠0, β=log_2  r  ⇒b_n =α+(n−1)β  b_1 +b_3 +b_5 =3α+(0+2+4)β=6  ⇒α+2β=2   ...(i)  b_1 b_3 b_5 =α(α+2β)(α+4β)=0  α(α+2β)(α+4β)=0  ⇒ α+4β=0 ...(ii)  from(i) and (ii) we get  α=4, β=−1  log_2  a_1 =4 ⇒a_1 =2^4 =16  log_2  r=−1 ⇒r=2^(−1) =(1/2)  ⇒a_n =2^4 ×((1/2))^(n−1) =(1/2^(n−5) )

$${a}_{{n}} ={a}_{\mathrm{1}} {r}^{{n}−\mathrm{1}} \\ $$ $${b}_{{n}} =\mathrm{log}_{\mathrm{2}} \:{a}_{{n}} =\mathrm{log}_{\mathrm{2}} \:\left({a}_{\mathrm{1}} {r}^{{n}−\mathrm{1}} \right)=\mathrm{log}_{\mathrm{2}} \:{a}_{\mathrm{1}} +\left({n}−\mathrm{1}\right)\mathrm{log}_{\mathrm{2}} \:{r} \\ $$ $${let}\:\alpha=\mathrm{log}_{\mathrm{2}} \:{a}_{\mathrm{1}} \neq\mathrm{0},\:\beta=\mathrm{log}_{\mathrm{2}} \:{r} \\ $$ $$\Rightarrow{b}_{{n}} =\alpha+\left({n}−\mathrm{1}\right)\beta \\ $$ $${b}_{\mathrm{1}} +{b}_{\mathrm{3}} +{b}_{\mathrm{5}} =\mathrm{3}\alpha+\left(\mathrm{0}+\mathrm{2}+\mathrm{4}\right)\beta=\mathrm{6} \\ $$ $$\Rightarrow\alpha+\mathrm{2}\beta=\mathrm{2}\:\:\:...\left({i}\right) \\ $$ $${b}_{\mathrm{1}} {b}_{\mathrm{3}} {b}_{\mathrm{5}} =\alpha\left(\alpha+\mathrm{2}\beta\right)\left(\alpha+\mathrm{4}\beta\right)=\mathrm{0} \\ $$ $$\alpha\left(\alpha+\mathrm{2}\beta\right)\left(\alpha+\mathrm{4}\beta\right)=\mathrm{0} \\ $$ $$\Rightarrow\:\alpha+\mathrm{4}\beta=\mathrm{0}\:...\left({ii}\right) \\ $$ $${from}\left({i}\right)\:{and}\:\left({ii}\right)\:{we}\:{get} \\ $$ $$\alpha=\mathrm{4},\:\beta=−\mathrm{1} \\ $$ $$\mathrm{log}_{\mathrm{2}} \:{a}_{\mathrm{1}} =\mathrm{4}\:\Rightarrow{a}_{\mathrm{1}} =\mathrm{2}^{\mathrm{4}} =\mathrm{16} \\ $$ $$\mathrm{log}_{\mathrm{2}} \:{r}=−\mathrm{1}\:\Rightarrow{r}=\mathrm{2}^{−\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$ $$\Rightarrow{a}_{{n}} =\mathrm{2}^{\mathrm{4}} ×\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{5}} } \\ $$

Commented byTawa11 last updated on 06/Jan/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com