Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 163349 by smallEinstein last updated on 06/Jan/22

Answered by Ar Brandon last updated on 06/Jan/22

I=∫_(−∞) ^∞ (∫_(−∞) ^∞ e^(−(3x^2 +2(√2)xy+3y^2 )) dx)dy     =∫_0 ^(2π) ∫_0 ^∞ re^(−(3r^2 +2(√2)r^2 sinϑcosϑ)) drdϑ     =∫_0 ^(2π) ∫_0 ^∞ re^(−r^2 (3+(√2)sin2ϑ)) drdϑ  u=r^2 (3+(√2)sin2ϑ)⇒du=2r(3+(√2)sin2ϑ)dr  I=∫_0 ^(2π) ∫_0 ^∞ (e^(−u) /(2(3+(√2)sin2ϑ)))dudϑ    =(1/2)∫_0 ^(2π) (dϑ/(3+(√2)sin2ϑ))=∫_(−π) ^π ((sec^2 ϑ)/(3sec^2 ϑ+2(√2)tanϑ))dϑ     =∫_(−∞) ^∞ (dt/(3t^2 +2(√2)t+3))=(1/3)∫_(−∞) ^∞ (dt/((t+((√2)/3))^2 +(7/9)))     =(1/( (√7)))[arctan(((3t+(√2))/( (√7))))]_(−∞) ^∞ =(π/( (√7)))

I=(e(3x2+22xy+3y2)dx)dy=02π0re(3r2+22r2sinϑcosϑ)drdϑ=02π0rer2(3+2sin2ϑ)drdϑu=r2(3+2sin2ϑ)du=2r(3+2sin2ϑ)drI=02π0eu2(3+2sin2ϑ)dudϑ=1202πdϑ3+2sin2ϑ=ππsec2ϑ3sec2ϑ+22tanϑdϑ=dt3t2+22t+3=13dt(t+23)2+79=17[arctan(3t+27)]=π7

Terms of Service

Privacy Policy

Contact: info@tinkutara.com