All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 163357 by mnjuly1970 last updated on 06/Jan/22
∫01ln(3x−3x2+x3)=?
Answered by Ar Brandon last updated on 06/Jan/22
I=∫01ln(3x−3x2+x3)dx=∫01lnxdx+∫01ln(x2−3x+3)dx=[xlnx−x]01+[xln(x2−3x+3)]01−∫012x2−3xx2−3x+3dx=−1−∫01(2+3x−6x2−3x+3)dx=−1−2−∫013x−6x2−3x+3dx=−3−32∫01(2x−3x2−3x+3−1x2−3x+3)dx=−3−32[ln(x2−3x+3)]01+32∫01dx(x−32)2+34=−3+32ln3+3[arctan(2x−33)]01=−3+32ln3+3(−π6+π3)=−3+32ln3+π23
Commented by mnjuly1970 last updated on 06/Jan/22
merceymrbrandon..
Terms of Service
Privacy Policy
Contact: info@tinkutara.com