Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 163400 by mnjuly1970 last updated on 06/Jan/22

       prove        Ω= ∫_0 ^( ∞) cot^( −1) (1+x^( 2) )=((√((1/( (√2)))−(1/2))) )  π

proveΩ=0cot1(1+x2)=(1212)π

Answered by Ar Brandon last updated on 06/Jan/22

Ω=∫cot^(−1) (1+x^2 )=xcot^(−1) (1+x^2 )+∫((2x^2 )/(x^4 +2x^2 +1))dx      =xcot^(−1) (1+x^2 )+∫(((x^2 +1)+(x^2 −1))/(x^4 +2x^2 +1))dx     =xcot^(−1) (1+x^2 )+∫((1+(1/x^2 ))/((x−(1/x))^2 +4))dx+∫((1−(1/x^2 ))/((x+(1/x))^2 ))dx     =xcot^(−1) (1+x^2 )+(1/2)tan^(−1) (((x^2 −1)/(2x)))−(x/(x^2 +1))+C

Ω=cot1(1+x2)=xcot1(1+x2)+2x2x4+2x2+1dx=xcot1(1+x2)+(x2+1)+(x21)x4+2x2+1dx=xcot1(1+x2)+1+1x2(x1x)2+4dx+11x2(x+1x)2dx=xcot1(1+x2)+12tan1(x212x)xx2+1+C

Answered by Kamel last updated on 07/Jan/22

     prove        Ω= ∫_0 ^( ∞) cot^( −1) (1+x^( 2) )=((√((1/( (√2)))−(1/2))) )  π          =2∫_0 ^(+∞) ((x^2 dx)/(1+(1+x^2 )^2 ))=^(t=x^2 ) ∫_0 ^(+∞) (((√t)dt)/(1+(1+t)^2 ))           =((√π)/2)∫_0 ^(+∞) ((sin(t)e^(−t) )/t^(3/2) )dt=((√π)/2)∫_1 ^(+∞) ∫_0 ^(+∞) ((sin(t))/( (√t)))e^(−at) dtda          =(√π)∫_1 ^(+∞) ∫_0 ^(+∞) sin(u^2 )e^(−au^2 ) duda         =(π/(4i))∫_1 ^(+∞) ((1/( (√(a−i))))−(1/( (√(a+i)))))da=(π/(2i))((√(1+i))−(√(1−i)))=π(√(√2))sin((π/8))  sin((π/8))=(√((1−cos((π/4)))/2))=(√(((√2)−1)/(2(√2))))=(1/( (√(√2))))(√((1/( (√2)))−(1/2)))  ∴  Ω=π(√((1/( (√2)))−(1/2)))

proveΩ=0cot1(1+x2)=(1212)π=20+x2dx1+(1+x2)2=t=x20+tdt1+(1+t)2=π20+sin(t)ett32dt=π21+0+sin(t)teatdtda=π1+0+sin(u2)eau2duda=π4i1+(1ai1a+i)da=π2i(1+i1i)=π2sin(π8)sin(π8)=1cos(π4)2=2122=121212Ω=π1212

Commented by mnjuly1970 last updated on 07/Jan/22

bravo...

bravo...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com