Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 163402 by Ahmed777hamouda last updated on 06/Jan/22

      ∫_0 ^1 (x−1)^(10) (x−3)^3 dx

01(x1)10(x3)3dx

Answered by Ar Brandon last updated on 06/Jan/22

I=∫_0 ^1 (x−1)^(10) (x−3)^3 dx, t=x−3     =∫_(−3) ^(−2) (t+2)^(10) t^3 dt=[((t^3 (t+2)^(11) )/(11))]_(−3) ^(−2) −(3/(11))∫_(−3) ^(−2) t^2 (t+2)^(11) dt     =−((27)/(11))−(3/(11))[((t^2 (t+2)^(12) )/(12))]_(−3) ^(−2) +(3/(11))∙(2/(12))∫_(−3) ^(−2) t(t+2)^(12) dt     =−((27)/(11))+((27)/(11×12))+(1/(22))[((t(t+2)^(13) )/(13))]_(−3) ^(−2) −(1/(22))∙(1/(13))∫_(−3) ^(−2) (t+2)^(13) dt     =−((27)/(11))+((27)/(132))−(1/(22))∙(3/(13))−(1/(22×13))∙[(((t+2)^(14) )/(14))]_(−3) ^(−2)      =−((27)/(11))+((27)/(132))−(3/(286))−(1/(286×14))=−((4525)/(2002))

I=01(x1)10(x3)3dx,t=x3=32(t+2)10t3dt=[t3(t+2)1111]3231132t2(t+2)11dt=2711311[t2(t+2)1212]32+31121232t(t+2)12dt=2711+2711×12+122[t(t+2)1313]3212211332(t+2)13dt=2711+27132122313122×13[(t+2)1414]32=2711+2713232861286×14=45252002

Commented by peter frank last updated on 07/Jan/22

great

great

Terms of Service

Privacy Policy

Contact: info@tinkutara.com