Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 163481 by smallEinstein last updated on 07/Jan/22

Answered by Mathspace last updated on 07/Jan/22

Ψ_n =∫_0 ^∞  cos(x^n )logx dx  letf(a)=∫_0 ^∞ x^a cos(x^n )dx  f^′ (a)=∫_0 ^∞ x^a logx cos(x^n )dx  ⇒f^′ (0)=∫_0 ^∞ cos(x^n )logx dx  f(a)=Re(∫_0 ^∞  x^a e^(ix^n ) dx)   ∫_0 ^∞  x^a  e^(ix^n ) dx  let ix^n =−t⇒x^n =it ⇒  x=(it)^(1/n) =e^((iπ)/(2n))  t^(1/(n )) ⇒  ∫_0 ^∞  x^a   e^(ix^n ) dx=e^((iπ)/(2n)) ∫_0 ^∞ e^((iπa)/(2n))  t^(a/n)  (1/n)t^((1/n)−1)  e^(−t) dt  =(1/n)e^(((iπ)/(2n))(a+1))  ∫_0 ^∞  t^(((a+1)/n)−1)  e^(−t)  dt  =(1/n)Γ(((a+1)/n))e^(((iπ)/(2n))(a+1))   ⇒f(a)=(1/n)Γ(((a+1)/n))cos(((π(a+1))/(2n)))  ⇒f^′ (a)=(1/n^2 )Γ^′ (((a+1)/n))cos(((π(a+1))/(2n)))  −(π/(2n^2 ))sin(((π(a+1))/(2n)))Γ(((a+1)/n))  Ψ_n =f^′ (0)=(1/n^2 )Γ^′ ((1/n))cos((π/(2n)))  −(π/(2n^2 ))sin((π/(2n)))Γ((1/n))  Ψ_4  =(1/(16))Γ^′ ((1/4))cos((π/8))−(π/(32))Γ((1/4))sin((π/8))  =∫_0 ^∞ cos(x^4 )logx dx

$$\Psi_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{cos}\left({x}^{{n}} \right){logx}\:{dx} \\ $$$${letf}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} {x}^{{a}} {cos}\left({x}^{{n}} \right){dx} \\ $$$${f}^{'} \left({a}\right)=\int_{\mathrm{0}} ^{\infty} {x}^{{a}} {logx}\:{cos}\left({x}^{{n}} \right){dx} \\ $$$$\Rightarrow{f}^{'} \left(\mathrm{0}\right)=\int_{\mathrm{0}} ^{\infty} {cos}\left({x}^{{n}} \right){logx}\:{dx} \\ $$$${f}\left({a}\right)={Re}\left(\int_{\mathrm{0}} ^{\infty} \:{x}^{{a}} {e}^{{ix}^{{n}} } {dx}\right)\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{x}^{{a}} \:{e}^{{ix}^{{n}} } {dx} \\ $$$${let}\:{ix}^{{n}} =−{t}\Rightarrow{x}^{{n}} ={it}\:\Rightarrow \\ $$$${x}=\left({it}\right)^{\frac{\mathrm{1}}{{n}}} ={e}^{\frac{{i}\pi}{\mathrm{2}{n}}} \:{t}^{\frac{\mathrm{1}}{{n}\:}} \Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{x}^{{a}} \:\:{e}^{{ix}^{{n}} } {dx}={e}^{\frac{{i}\pi}{\mathrm{2}{n}}} \int_{\mathrm{0}} ^{\infty} {e}^{\frac{{i}\pi{a}}{\mathrm{2}{n}}} \:{t}^{\frac{{a}}{{n}}} \:\frac{\mathrm{1}}{{n}}{t}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} \:{e}^{−{t}} {dt} \\ $$$$=\frac{\mathrm{1}}{{n}}{e}^{\frac{{i}\pi}{\mathrm{2}{n}}\left({a}+\mathrm{1}\right)} \:\int_{\mathrm{0}} ^{\infty} \:{t}^{\frac{{a}+\mathrm{1}}{{n}}−\mathrm{1}} \:{e}^{−{t}} \:{dt} \\ $$$$=\frac{\mathrm{1}}{{n}}\Gamma\left(\frac{{a}+\mathrm{1}}{{n}}\right){e}^{\frac{{i}\pi}{\mathrm{2}{n}}\left({a}+\mathrm{1}\right)} \\ $$$$\Rightarrow{f}\left({a}\right)=\frac{\mathrm{1}}{{n}}\Gamma\left(\frac{{a}+\mathrm{1}}{{n}}\right){cos}\left(\frac{\pi\left({a}+\mathrm{1}\right)}{\mathrm{2}{n}}\right) \\ $$$$\Rightarrow{f}^{'} \left({a}\right)=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\Gamma^{'} \left(\frac{{a}+\mathrm{1}}{{n}}\right){cos}\left(\frac{\pi\left({a}+\mathrm{1}\right)}{\mathrm{2}{n}}\right) \\ $$$$−\frac{\pi}{\mathrm{2}{n}^{\mathrm{2}} }{sin}\left(\frac{\pi\left({a}+\mathrm{1}\right)}{\mathrm{2}{n}}\right)\Gamma\left(\frac{{a}+\mathrm{1}}{{n}}\right) \\ $$$$\Psi_{{n}} ={f}^{'} \left(\mathrm{0}\right)=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\Gamma^{'} \left(\frac{\mathrm{1}}{{n}}\right){cos}\left(\frac{\pi}{\mathrm{2}{n}}\right) \\ $$$$−\frac{\pi}{\mathrm{2}{n}^{\mathrm{2}} }{sin}\left(\frac{\pi}{\mathrm{2}{n}}\right)\Gamma\left(\frac{\mathrm{1}}{{n}}\right) \\ $$$$\Psi_{\mathrm{4}} \:=\frac{\mathrm{1}}{\mathrm{16}}\Gamma^{'} \left(\frac{\mathrm{1}}{\mathrm{4}}\right){cos}\left(\frac{\pi}{\mathrm{8}}\right)−\frac{\pi}{\mathrm{32}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right){sin}\left(\frac{\pi}{\mathrm{8}}\right) \\ $$$$=\int_{\mathrm{0}} ^{\infty} {cos}\left({x}^{\mathrm{4}} \right){logx}\:{dx} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com