Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 163483 by Zaynal last updated on 07/Jan/22

Answered by alephzero last updated on 07/Jan/22

∫_0 ^1 4x^3 {(d^2 /dx^2 )(1−x^2 )^5 }dx = ?  (d^2 /dx^2 )(1−x^2 )^5  = (d/dx)((d/dx)(1−x^2 )^5 )  (d/dx)(f(g)) = (d/dg)(f(g)) × (d/dx)(g)  Let g = 1−x^2   ⇒ (d/dx)(1−x^2 )^5  = (d/dg)(g^5 ) × (d/dx)(1−x^2 ) =  = 5g^4 (−2x) = 5(1−x^2 )^4 (−2x) =  = −10x(1−x^2 )^4   (d/dx)(−10x(1−x^2 )^4 ) =   (1−x^2 )^4  = (1−x^2 )^(2 + 2)  = (1−x^2 )^2 (1−x^2 )^2 =  = (1−2x^2  + x^4 )(1−2x^2  + x^4 ) =  = 1−2x^2 +x^4 −2x^2 +4x^2 −2x^6 +x^4 −2x^6 +x^8  =  = 1−4x^2 +6x^4 −4x^6 +x^8   −10x(1−4x^2 +6x^4 −4x^6 +x^8 ) =   = −10x + 40x^3  − 60x^5  + 40x^7  − 10x^9   (d/dx)(−10x+40x^3 −60x^5 +40x^7 −10x^9 ) =  (d/dx)(−10x)+(d/dx)(40x^3 )−(d/dx)(60x^5 )+(d/dx)(40x^7 )−  −(d/dx)(10x^9 ) = −10+120x^2 −300x^4 +  +280x^6 −90x^8  =  = −90x^8 +280x^6 −300x^4 +120x^2 −10  ∫4x^3 (−90x^8 +280x^6 −300x^4 +120x^2 −10)dx =  =∫−360x^(11) +1120x^9 −1200x^7 +480x^5 −  −40x^3 dx = −∫360x^(11) dx+∫1120x^9 dx−  −∫1200x^7 dx+∫480x^5 dx−∫40x^3 dx=  −30x^(12) +112x^(10) −150x^8 +80x^6 −10x^4 +C  ∫_0 ^1 4x^3 (−90x^8 +280x^6 −300x^4 +120x^2 −10)dx =  −30+112−150+80−10−(−10) =  = 12

014x3{d2dx2(1x2)5}dx=?d2dx2(1x2)5=ddx(ddx(1x2)5)ddx(f(g))=ddg(f(g))×ddx(g)Letg=1x2ddx(1x2)5=ddg(g5)×ddx(1x2)==5g4(2x)=5(1x2)4(2x)==10x(1x2)4ddx(10x(1x2)4)=(1x2)4=(1x2)2+2=(1x2)2(1x2)2==(12x2+x4)(12x2+x4)==12x2+x42x2+4x22x6+x42x6+x8==14x2+6x44x6+x810x(14x2+6x44x6+x8)==10x+40x360x5+40x710x9ddx(10x+40x360x5+40x710x9)=ddx(10x)+ddx(40x3)ddx(60x5)+ddx(40x7)ddx(10x9)=10+120x2300x4++280x690x8==90x8+280x6300x4+120x2104x3(90x8+280x6300x4+120x210)dx==360x11+1120x91200x7+480x540x3dx=360x11dx+1120x9dx1200x7dx+480x5dx40x3dx=30x12+112x10150x8+80x610x4+C014x3(90x8+280x6300x4+120x210)dx=30+112150+8010(10)==12

Commented by Zaynal last updated on 07/Jan/22

ans is 2

ansis2

Answered by mr W last updated on 07/Jan/22

(d/dx)(1−x^2 )^5 =5(1−x^2 )^4 (−2x)  (d^2 /dx^2 )(1−x^2 )^5 =−10(1−x^2 )^4 +80x^2 (1−x^2 )^3     ∫_0 ^1 4x^3 {−10(1−x^2 )^4 +80x^2 (1−x^2 )^3 }dx  =∫_0 ^1 2x^2 {−10(1−x^2 )^4 +80x^2 (1−x^2 )^3 }d(x^2 )  =20∫_0 ^1 u(9u−1)(1−u)^3 du  =20∫_0 ^1 (u−1+1)(−9(u−1)−8)(u−1)^3 d(u−1)  =20∫_(−1) ^0 (t+1)(−9t−8)t^3 dt  =20∫_0 ^(−1) (t+1)(9t+8)t^3 dt  =20∫_0 ^(−1) (9t^5 +17t^4 +8t^3 )dt  =20[((3t^6 )/2)+((17t^5 )/5)+2t^4 ]_0 ^(−1) dt  =20((3/2)−((17)/5)+2)  =20×(1/(10))  =2

ddx(1x2)5=5(1x2)4(2x)d2dx2(1x2)5=10(1x2)4+80x2(1x2)3014x3{10(1x2)4+80x2(1x2)3}dx=012x2{10(1x2)4+80x2(1x2)3}d(x2)=2001u(9u1)(1u)3du=2001(u1+1)(9(u1)8)(u1)3d(u1)=2010(t+1)(9t8)t3dt=2001(t+1)(9t+8)t3dt=2001(9t5+17t4+8t3)dt=20[3t62+17t55+2t4]01dt=20(32175+2)=20×110=2

Answered by Ar Brandon last updated on 07/Jan/22

I=∫_0 ^1 4x^3 {(d^2 /dx^2 )(1−x^2 )^5 }dx  (d^2 /dx^2 )(1−x^2 )^5 =−10(1−x^2 )^4 +80x^2 (1−x^2 )^3   I=−40∫_0 ^1 x^3 (1−x^2 )^4 dx+320∫_0 ^1 x^5 (1−x^2 )^3 dx     =−20∫_0 ^1 u(1−u)^4 du+160∫_0 ^1 u^2 (1−u)^3 du     =−20β(2, 5)+160β(3, 4)=−20∙((4!)/(6!))+160∙((2×3!)/(6!))     =−(2/3)+(8/3)=(6/3)=2

I=014x3{d2dx2(1x2)5}dxd2dx2(1x2)5=10(1x2)4+80x2(1x2)3I=4001x3(1x2)4dx+32001x5(1x2)3dx=2001u(1u)4du+16001u2(1u)3du=20β(2,5)+160β(3,4)=204!6!+1602×3!6!=23+83=63=2

Answered by ajfour last updated on 07/Jan/22

x^2 =t  ∫_0 ^( 1) 2t{(d^2 /dx^2 )(1−x^2 )^5 }dt  =∫(d/dx){5(−2x)(1−x^2 )^4 }2tdt  =5∫_0 ^( 1) {16t(1−t)^3 −2(1−t)^4 }(2tdt)  =10∫_0 ^( 1) {16(1−t)t^3 −2t^4 }(1−t)dt  =10∫{16t^3 −18t^4 )(1−t)dt  =10∫_0 ^( 1) (16t^3 −16t^4 −18t^4 +18t^5 )dt  =10[4−((34)/5)+3]=70−68 = 2  (got it).

x2=t012t{d2dx2(1x2)5}dt=ddx{5(2x)(1x2)4}2tdt=501{16t(1t)32(1t)4}(2tdt)=1001{16(1t)t32t4}(1t)dt=10{16t318t4)(1t)dt=1001(16t316t418t4+18t5)dt=10[4345+3]=7068=2(gotit).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com