Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 163536 by HongKing last updated on 07/Jan/22

Prove that:  ∫_( 9) ^( 1)  ((ln (1 + x))/(1 + x^2 )) dx = ((π ∙ ln (2))/8)

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\:\mathrm{9}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{ln}\:\left(\mathrm{1}\:+\:\mathrm{x}\right)}{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:=\:\frac{\pi\:\centerdot\:\mathrm{ln}\:\left(\mathrm{2}\right)}{\mathrm{8}} \\ $$

Answered by Ar Brandon last updated on 07/Jan/22

I=∫_0 ^1 ((ln(1+x))/(1+x^2 ))dx , x=tanϑ     =∫_0 ^(π/4) ln(1+tanϑ)dϑ     =∫_0 ^(π/4) ln(cosϑ+sinϑ)dϑ−∫_0 ^(π/4) ln(cosϑ)dϑ     =∫_0 ^(π/4) ln((√2)cos(x−(π/4)))dx−∫_0 ^(π/4) ln(cosϑ)dϑ     =((πln2)/8)+∫_0 ^(π/4) ln(cos(x−(π/4)))−∫_0 ^(π/4) ln(cosϑ)dϑ     =((πln2)/8)+∫_0 ^(π/4) ln(cosϑ)dϑ−∫_0 ^(π/4) ln(cosϑ)dϑ=((πln2)/8)

$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:,\:{x}=\mathrm{tan}\vartheta \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{1}+\mathrm{tan}\vartheta\right){d}\vartheta \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{cos}\vartheta+\mathrm{sin}\vartheta\right){d}\vartheta−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{cos}\vartheta\right){d}\vartheta \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\sqrt{\mathrm{2}}\mathrm{cos}\left({x}−\frac{\pi}{\mathrm{4}}\right)\right){dx}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{cos}\vartheta\right){d}\vartheta \\ $$$$\:\:\:=\frac{\pi\mathrm{ln2}}{\mathrm{8}}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{cos}\left({x}−\frac{\pi}{\mathrm{4}}\right)\right)−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{cos}\vartheta\right){d}\vartheta \\ $$$$\:\:\:=\frac{\pi\mathrm{ln2}}{\mathrm{8}}+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{cos}\vartheta\right){d}\vartheta−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{cos}\vartheta\right){d}\vartheta=\frac{\pi\mathrm{ln2}}{\mathrm{8}} \\ $$

Commented by HongKing last updated on 07/Jan/22

perfect my dear Sir thank you so much

$$\mathrm{perfect}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Commented by peter frank last updated on 11/Jan/22

great

$$\mathrm{great} \\ $$

Answered by smallEinstein last updated on 07/Jan/22

Commented by GalaxyBills last updated on 07/Jan/22

My Boss that

$${My}\:{Boss}\:{that} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com