Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 163658 by mathlove last updated on 09/Jan/22

lim_(x→∞) ((sin (π/(2n))×sin ((2π)/(2n))×sin ((3π)/(2n))....×sin (((n−1)π)/n)))^(1/n) =?

limxsinπ2n×sin2π2n×sin3π2n....×sin(n1)πnn=?

Answered by Ar Brandon last updated on 09/Jan/22

A=lim_(n→∞) ((sin (π/(2n))×sin ((2π)/(2n))×sin ((3π)/(2n))....×sin (((n−1)π)/n)))^(1/n)   lnA=lim_(n→∞) (1/n)ln(Π_(k=1) ^(n−1) sin(((kπ)/(2n))))=lim_(n→∞) (1/n)Σ_(k=1) ^(n−1) ln(sin(((kπ)/(2n))))           =∫_0 ^1 ln(sin((π/2)x))dx=(2/π)∫_0 ^(π/2) ln(sinu)du            =(2/π)(−((πln2)/2))=−ln2 ⇒A=e^(ln((1/2))) =(1/2)

A=limnsinπ2n×sin2π2n×sin3π2n....×sin(n1)πnnlnA=limn1nln(n1k=1sin(kπ2n))=limn1nn1k=1ln(sin(kπ2n))=01ln(sin(π2x))dx=2π0π2ln(sinu)du=2π(πln22)=ln2A=eln(12)=12

Answered by qaz last updated on 09/Jan/22

lim_(n→∞) ((sin (π/(2n))∙sin ((2π)/(2n))∙...∙sin (((n−1)π)/n)))^(1/n)   =explim_(n→∞) (1/n)Σ_(k=1) ^(2n−2) lnsin ((kπ)/(2n))  =e^(∫_0 ^2 lnsin (π/2)xdx)   =(1/4)

limnsinπ2nsin2π2n...sin(n1)πnn=explimn1n2n2k=1lnsinkπ2n=e02lnsinπ2xdx=14

Terms of Service

Privacy Policy

Contact: info@tinkutara.com