All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 163658 by mathlove last updated on 09/Jan/22
limx→∞sinπ2n×sin2π2n×sin3π2n....×sin(n−1)πnn=?
Answered by Ar Brandon last updated on 09/Jan/22
A=limn→∞sinπ2n×sin2π2n×sin3π2n....×sin(n−1)πnnlnA=limn→∞1nln(∏n−1k=1sin(kπ2n))=limn→∞1n∑n−1k=1ln(sin(kπ2n))=∫01ln(sin(π2x))dx=2π∫0π2ln(sinu)du=2π(−πln22)=−ln2⇒A=eln(12)=12
Answered by qaz last updated on 09/Jan/22
limn→∞sinπ2n⋅sin2π2n⋅...⋅sin(n−1)πnn=explimn→∞1n∑2n−2k=1lnsinkπ2n=e∫02lnsinπ2xdx=14
Terms of Service
Privacy Policy
Contact: info@tinkutara.com