Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 163662 by amin96 last updated on 09/Jan/22

Commented by amin96 last updated on 09/Jan/22

PROVE THAT

$$\boldsymbol{\mathrm{PROVE}}\:\boldsymbol{\mathrm{THAT}} \\ $$

Answered by Ar Brandon last updated on 09/Jan/22

S=2Σ_(n=0) ^∞ ((n!)/((2n+1)!!))=2Σ_(n=0) ^∞ ((n!×n!×2^n )/((2n+1)!))=Σ_(n=0) ^∞ ((Γ^2 (n+1))/(Γ(2n+2)))×2^(n+1)      =Σ_(n=0) ^∞ 2^(n+1) β(n+1, n+1)=Σ_(n=0) ^∞ 2^(n+1) ∫_0 ^1 x^n (1−x)^n dx     =2∫_0 ^1 Σ_(n=0) ^∞ (2x−2x^2 )^n dx=2∫_0 ^1 (dx/(2x^2 −2x+1))     =∫_0 ^1 (dx/((x−(1/2))^2 +(1/4)))=2[arctan(2x−1)]_0 ^1      =2((π/4)+(π/4))=2×(π/2)=π

$${S}=\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}!}{\left(\mathrm{2}{n}+\mathrm{1}\right)!!}=\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}!×{n}!×\mathrm{2}^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\Gamma^{\mathrm{2}} \left({n}+\mathrm{1}\right)}{\Gamma\left(\mathrm{2}{n}+\mathrm{2}\right)}×\mathrm{2}^{{n}+\mathrm{1}} \\ $$$$\:\:\:=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{2}^{{n}+\mathrm{1}} \beta\left({n}+\mathrm{1},\:{n}+\mathrm{1}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{2}^{{n}+\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} \left(\mathrm{1}−{x}\right)^{{n}} {dx} \\ $$$$\:\:\:=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\mathrm{2}{x}−\mathrm{2}{x}^{\mathrm{2}} \right)^{{n}} {dx}=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}} \\ $$$$\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}}=\mathrm{2}\left[\mathrm{arctan}\left(\mathrm{2}{x}−\mathrm{1}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\:\:\:=\mathrm{2}\left(\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{4}}\right)=\mathrm{2}×\frac{\pi}{\mathrm{2}}=\pi \\ $$

Commented by amin96 last updated on 09/Jan/22

yes sir. bravoooo

$${yes}\:{sir}.\:{bravoooo} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com