Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 163666 by Zaynal last updated on 09/Jan/22

lim _(x→𝛑)   (((x^𝛑  βˆ’ 𝛑^x )/(xβˆ’π›‘))) =??  β‰ͺzaynal≫

limxβ†’Ο€(xΟ€βˆ’Ο€xxβˆ’Ο€)=??β‰ͺzaynal≫

Answered by mahdipoor last updated on 09/Jan/22

hopβ‡’lim_(xβ†’Ο€) ((Ο€x^(Ο€βˆ’1) βˆ’Ο€^x lnΟ€)/1)=Ο€^Ο€ (1βˆ’lnΟ€)

hopβ‡’limx→ππxΟ€βˆ’1βˆ’Ο€xlnΟ€1=ππ(1βˆ’lnΟ€)

Answered by Ar Brandon last updated on 09/Jan/22

=Ο€^Ο€ βˆ’Ο€^Ο€ lnΟ€=Ο€^Ο€ ln((e/Ο€))

=Ο€Ο€βˆ’Ο€Ο€lnΟ€=ππln(eΟ€)

Commented by Zaynal last updated on 09/Jan/22

ok

ok

Answered by alephzero last updated on 09/Jan/22

lim_(xβ†’Ο€) ((x^Ο€ βˆ’Ο€^x )/(xβˆ’Ο€)) = lim_(xβ†’Ο€) (((x^Ο€ βˆ’Ο€^x )β€²)/((xβˆ’Ο€)β€²)) =  = lim_(xβ†’Ο€) (((x^Ο€ )β€²βˆ’(Ο€^x )β€²)/((x)β€²βˆ’(Ο€)β€²)) = lim_(xβ†’Ο€) ((Ο€x^(Ο€βˆ’1) βˆ’ln(Ο€)Ο€^x )/(1βˆ’0)) =  lim_(xβ†’Ο€) (Ο€x^(Ο€βˆ’1) βˆ’ln(Ο€)Ο€^x ) =  = ππ^(Ο€βˆ’1) βˆ’ln(Ο€)Ο€^Ο€  = Ο€^Ο€ βˆ’ln(Ο€)Ο€^Ο€  =  = Ο€^Ο€ (1βˆ’ln(Ο€))  β‡’ lim_(xβ†’Ο€) ((x^Ο€ βˆ’Ο€^x )/(xβˆ’Ο€)) = Ο€^Ο€ (1βˆ’ln(Ο€))

limxβ†’Ο€xΟ€βˆ’Ο€xxβˆ’Ο€=limxβ†’Ο€(xΟ€βˆ’Ο€x)β€²(xβˆ’Ο€)β€²==limxβ†’Ο€(xΟ€)β€²βˆ’(Ο€x)β€²(x)β€²βˆ’(Ο€)β€²=limx→ππxΟ€βˆ’1βˆ’ln(Ο€)Ο€x1βˆ’0=limxβ†’Ο€(Ο€xΟ€βˆ’1βˆ’ln(Ο€)Ο€x)==Ο€Ο€Ο€βˆ’1βˆ’ln(Ο€)ππ=Ο€Ο€βˆ’ln(Ο€)ππ==ππ(1βˆ’ln(Ο€))β‡’limxβ†’Ο€xΟ€βˆ’Ο€xxβˆ’Ο€=ππ(1βˆ’ln(Ο€))

Answered by manxsolar last updated on 16/Jan/22

regla Lβ€²Hospital  (0/0)β†’             lim   _(Γ—β†’Ο€)       ((fβ€²)/(gβ€²))

reglaLβ€²Hospital00β†’limΓ—β†’Ο€fβ€²gβ€²

Terms of Service

Privacy Policy

Contact: info@tinkutara.com