Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 163719 by HongKing last updated on 09/Jan/22

Evaluate the following limit:  Φ =lim_(n→∞)  - (1/(n!)) ∙ (d^n /dx^n ) ((e^(x-1) /(x - 1)))∣_(x=0)

$$\mathrm{Evaluate}\:\mathrm{the}\:\mathrm{following}\:\mathrm{limit}: \\ $$$$\Phi\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:-\:\frac{\mathrm{1}}{\mathrm{n}!}\:\centerdot\:\frac{\mathrm{d}^{\boldsymbol{\mathrm{n}}} }{\mathrm{dx}^{\boldsymbol{\mathrm{n}}} }\:\left(\frac{\mathrm{e}^{\boldsymbol{\mathrm{x}}-\mathrm{1}} }{\mathrm{x}\:-\:\mathrm{1}}\right)\mid_{\boldsymbol{\mathrm{x}}=\mathrm{0}} \\ $$

Answered by Mathspace last updated on 09/Jan/22

f(x)=(e^(x−1) /(x−1)) ⇒Φ=lim_(n→∞) −(1/(n!))f^((n)) (0)  f^((n)) (x)=(1/e)((e^x /(x−1)))^((n))   ef^((n)) (x)=Σ_(k=0) ^n  C_n ^k ((1/(x−1)))^((k)) (e^x )^((n−k))   =(e^x /(x−1))+e^(x ) Σ_(k=1) ^n  C_n ^k (((−1)^k k!)/((x−1)^(k+1) )) ⇒  f^((n)) (0)=−1+Σ_(k=1) ^(n ) C_n ^k (−1)^(k+1) (−1)^k k!  =−1−Σ_(k=1) ^n  ((n!)/((n−k)!)) ⇒  −(1/(n!))f^((n)) (0)=(1/(n!))+Σ_(k=1) ^n  (1/((n−k)!))  =Σ_(k=0) ^n  (1/((n−k)!))=_(n−k=p)  Σ_(p=0) ^(n ) (1/(p!))  ⇒lim_(n→+∞) −(1/(n!))f^((n)) (0)=  Σ_(p=0) ^∞  (1/(p!)) =e   (e^x  =Σ(x^n /(n!)))

$${f}\left({x}\right)=\frac{{e}^{{x}−\mathrm{1}} }{{x}−\mathrm{1}}\:\Rightarrow\Phi={lim}_{{n}\rightarrow\infty} −\frac{\mathrm{1}}{{n}!}{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$${f}^{\left({n}\right)} \left({x}\right)=\frac{\mathrm{1}}{{e}}\left(\frac{{e}^{{x}} }{{x}−\mathrm{1}}\right)^{\left({n}\right)} \\ $$$${ef}^{\left({n}\right)} \left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \left(\frac{\mathrm{1}}{{x}−\mathrm{1}}\right)^{\left({k}\right)} \left({e}^{{x}} \right)^{\left({n}−{k}\right)} \\ $$$$=\frac{{e}^{{x}} }{{x}−\mathrm{1}}+{e}^{{x}\:} \sum_{{k}=\mathrm{1}} ^{{n}} \:{C}_{{n}} ^{{k}} \frac{\left(−\mathrm{1}\right)^{{k}} {k}!}{\left({x}−\mathrm{1}\right)^{{k}+\mathrm{1}} }\:\Rightarrow \\ $$$${f}^{\left({n}\right)} \left(\mathrm{0}\right)=−\mathrm{1}+\sum_{{k}=\mathrm{1}} ^{{n}\:} {C}_{{n}} ^{{k}} \left(−\mathrm{1}\right)^{{k}+\mathrm{1}} \left(−\mathrm{1}\right)^{{k}} {k}! \\ $$$$=−\mathrm{1}−\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{n}!}{\left({n}−{k}\right)!}\:\Rightarrow \\ $$$$−\frac{\mathrm{1}}{{n}!}{f}^{\left({n}\right)} \left(\mathrm{0}\right)=\frac{\mathrm{1}}{{n}!}+\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\left({n}−{k}\right)!} \\ $$$$=\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}}{\left({n}−{k}\right)!}=_{{n}−{k}={p}} \:\sum_{{p}=\mathrm{0}} ^{{n}\:} \frac{\mathrm{1}}{{p}!} \\ $$$$\Rightarrow{lim}_{{n}\rightarrow+\infty} −\frac{\mathrm{1}}{{n}!}{f}^{\left({n}\right)} \left(\mathrm{0}\right)= \\ $$$$\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{p}!}\:={e}\:\:\:\left({e}^{{x}} \:=\Sigma\frac{{x}^{{n}} }{{n}!}\right) \\ $$

Commented by Mathspace last updated on 09/Jan/22

f^((n)) (0)=(1/e)(−1−...) ⇒  lim_(n→+∞) −(1/(n!))f^((n)) (0)=(1/e)Σ_(p=0) ^∞  (1/(p!)) =1

$${f}^{\left({n}\right)} \left(\mathrm{0}\right)=\frac{\mathrm{1}}{{e}}\left(−\mathrm{1}−...\right)\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} −\frac{\mathrm{1}}{{n}!}{f}^{\left({n}\right)} \left(\mathrm{0}\right)=\frac{\mathrm{1}}{{e}}\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{p}!}\:=\mathrm{1} \\ $$

Commented by HongKing last updated on 09/Jan/22

perfect my dear Sir thank you so much

$$\mathrm{perfect}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Commented by Mathspace last updated on 09/Jan/22

you are welcome sir

$${you}\:{are}\:{welcome}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com