Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 163812 by mathlove last updated on 11/Jan/22

Answered by cortano1 last updated on 11/Jan/22

 p(x)= x^3 +1   p(4)= 65

$$\:{p}\left({x}\right)=\:{x}^{\mathrm{3}} +\mathrm{1} \\ $$$$\:{p}\left(\mathrm{4}\right)=\:\mathrm{65} \\ $$

Commented by mathlove last updated on 11/Jan/22

how?

$${how}? \\ $$

Commented by Rasheed.Sindhi last updated on 11/Jan/22

            To whom               who liked the above post  Would you like to tell the reason of  liking please?

$$\:\:\:\:\:\:\:\:\:\:\:\:\mathcal{T}{o}\:{whom} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{who}\:{liked}\:{the}\:{above}\:{post} \\ $$$${Would}\:{you}\:{like}\:{to}\:{tell}\:{the}\:{reason}\:{of} \\ $$$${liking}\:{please}? \\ $$

Commented by mr W last updated on 11/Jan/22

maybe he just also wanted to know  “how”. in this forum many people  use “like” not to show that they really  like a post. i think many people give  themselves a like such that their  post can not be red flagged or for what  who knows.

$${maybe}\:{he}\:{just}\:{also}\:{wanted}\:{to}\:{know} \\ $$$$``{how}''.\:{in}\:{this}\:{forum}\:{many}\:{people} \\ $$$${use}\:``{like}''\:{not}\:{to}\:{show}\:{that}\:{they}\:{really} \\ $$$${like}\:{a}\:{post}.\:{i}\:{think}\:{many}\:{people}\:{give} \\ $$$${themselves}\:{a}\:{like}\:{such}\:{that}\:{their} \\ $$$${post}\:{can}\:{not}\:{be}\:{red}\:{flagged}\:{or}\:{for}\:{what} \\ $$$${who}\:{knows}. \\ $$

Commented by Rasheed.Sindhi last updated on 12/Jan/22

Maybe s/he has given a like to increase  the importance of the post but ultimately  it′ll be the cause to decrease importance  of ′likes′ itself!

$$\mathcal{M}{aybe}\:{s}/{he}\:{has}\:{given}\:{a}\:{like}\:{to}\:{increase} \\ $$$${the}\:{importance}\:{of}\:{the}\:{post}\:{but}\:{ultimately} \\ $$$${it}'{ll}\:{be}\:{the}\:{cause}\:{to}\:{decrease}\:{importance} \\ $$$${of}\:'{likes}'\:{itself}! \\ $$

Answered by Ar Brandon last updated on 11/Jan/22

p(3)=28 therefore p(x) must be a non-zero polynomial.  Let p(x)=a_0 +a_1 x+a_2 x^2 +∙∙∙+a_n x^n , a_n ≠0  Suppose that p(x)+p((1/x))=p(x)p((1/x)) for all x≠0  Then Σ_(r=0) ^n a_r x^r +Σ_(r=1) ^n (a_r /x^r )=(Σ_(r=0) ^n a_r x^r )(Σ_(r=1) ^n (a_r /x^r ))  Multiplying through by x^n , we get that  Σ_(r=0) ^n a_r x^(n+r) +Σ_(r=0) ^n a_r x^(n−r) =(Σ_(r=0) ^n a_r x^r )(Σ_(r=0) ^n a_r x^(n−r) )  That is,  (a_0 x^n +a_1 x^(n+1) +∙∙∙a_n x^(2n) )+(a_0 x^n +a_1 x^(n−1) +∙∙∙+a_(n−1) x+a_n )        =(a_0 +a_1 x+∙∙∙a_n x^n )(a_0 x^n +a_1 x^(n−1) +∙∙∙+a_(n−1) x+a_n )  Equating the corresponding coefficients of powers of x,  we have           a_n =^x^0  a_0 a_n , a_(n−1) =^x^1  a_0 a_(n−1) +a_1 a_n            a_(n−2) =^x^2  a_2 a_n +a_1 a_(n−1) +a_(n−2) a_0            2a_0 =^x^n  a_0 ^2 +a_n ^2             a_n =^x^(2n)  a_0 a_n ⇒a_0 =1 (since a_n ≠0)            a_(n−1) =a_0 a_(n−1) +a_1 a_n ⇒a_1 a_n =0⇒a_1 =0            a_(n−2) =a_2 a_n +a_1 a_(n−1) +a_(n−2) a_0 ⇒a_(n−2) =a_2 a_n +a_(n−2) ⇒a_2 =0  Continuing this process, we get that a_(n−1) =0 and 2=1+a_n ^2 .  Hence a_n =±1. Therefore                                                  p(x)=1±x^n   Since we are given that p(3)=28 we have                                    28=1±3^n   Therefore p(x) cannot be 1−x^n . Thus, p(x)=1+x^n  and  28=1+3^n  and hence n=3. So p(x)=1+x^3  and p(4)=65.

$${p}\left(\mathrm{3}\right)=\mathrm{28}\:\mathrm{therefore}\:{p}\left({x}\right)\:\mathrm{must}\:\mathrm{be}\:\mathrm{a}\:\mathrm{non}-\mathrm{zero}\:\mathrm{polynomial}. \\ $$$$\mathrm{Let}\:{p}\left({x}\right)={a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +\centerdot\centerdot\centerdot+{a}_{{n}} {x}^{{n}} ,\:{a}_{{n}} \neq\mathrm{0} \\ $$$$\mathrm{Suppose}\:\mathrm{that}\:{p}\left({x}\right)+{p}\left(\frac{\mathrm{1}}{{x}}\right)={p}\left({x}\right){p}\left(\frac{\mathrm{1}}{{x}}\right)\:\mathrm{for}\:\mathrm{all}\:{x}\neq\mathrm{0} \\ $$$$\mathrm{Then}\:\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{\mathrm{r}} +\underset{\mathrm{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{a}_{\mathrm{r}} }{{x}^{\mathrm{r}} }=\left(\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{\mathrm{r}} \right)\left(\underset{\mathrm{r}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{a}_{\mathrm{r}} }{{x}^{\mathrm{r}} }\right) \\ $$$$\mathrm{Multiplying}\:\mathrm{through}\:\mathrm{by}\:{x}^{{n}} ,\:\mathrm{we}\:\mathrm{get}\:\mathrm{that} \\ $$$$\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{{n}+\mathrm{r}} +\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{{n}−\mathrm{r}} =\left(\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{\mathrm{r}} \right)\left(\underset{\mathrm{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{\mathrm{r}} {x}^{{n}−\mathrm{r}} \right) \\ $$$$\mathrm{That}\:\mathrm{is}, \\ $$$$\left({a}_{\mathrm{0}} {x}^{{n}} +{a}_{\mathrm{1}} {x}^{{n}+\mathrm{1}} +\centerdot\centerdot\centerdot{a}_{{n}} {x}^{\mathrm{2}{n}} \right)+\left({a}_{\mathrm{0}} {x}^{{n}} +{a}_{\mathrm{1}} {x}^{{n}−\mathrm{1}} +\centerdot\centerdot\centerdot+{a}_{{n}−\mathrm{1}} {x}+{a}_{{n}} \right) \\ $$$$\:\:\:\:\:\:=\left({a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+\centerdot\centerdot\centerdot{a}_{{n}} {x}^{{n}} \right)\left({a}_{\mathrm{0}} {x}^{{n}} +{a}_{\mathrm{1}} {x}^{{n}−\mathrm{1}} +\centerdot\centerdot\centerdot+{a}_{{n}−\mathrm{1}} {x}+{a}_{{n}} \right) \\ $$$$\mathrm{Equating}\:\mathrm{the}\:\mathrm{corresponding}\:\mathrm{coefficients}\:\mathrm{of}\:\mathrm{powers}\:\mathrm{of}\:{x}, \\ $$$$\mathrm{we}\:\mathrm{have} \\ $$$$\:\:\:\:\:\:\:\:\:{a}_{{n}} \overset{{x}^{\mathrm{0}} } {=}{a}_{\mathrm{0}} {a}_{{n}} ,\:{a}_{{n}−\mathrm{1}} \overset{{x}^{\mathrm{1}} } {=}{a}_{\mathrm{0}} {a}_{{n}−\mathrm{1}} +{a}_{\mathrm{1}} {a}_{{n}} \\ $$$$\:\:\:\:\:\:\:\:\:{a}_{{n}−\mathrm{2}} \overset{{x}^{\mathrm{2}} } {=}{a}_{\mathrm{2}} {a}_{{n}} +{a}_{\mathrm{1}} {a}_{{n}−\mathrm{1}} +{a}_{{n}−\mathrm{2}} {a}_{\mathrm{0}} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{2}{a}_{\mathrm{0}} \overset{{x}^{{n}} } {=}{a}_{\mathrm{0}} ^{\mathrm{2}} +{a}_{{n}} ^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:{a}_{{n}} \overset{{x}^{\mathrm{2}{n}} } {=}{a}_{\mathrm{0}} {a}_{{n}} \Rightarrow{a}_{\mathrm{0}} =\mathrm{1}\:\left(\mathrm{since}\:{a}_{{n}} \neq\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:{a}_{{n}−\mathrm{1}} ={a}_{\mathrm{0}} {a}_{{n}−\mathrm{1}} +{a}_{\mathrm{1}} {a}_{{n}} \Rightarrow{a}_{\mathrm{1}} {a}_{{n}} =\mathrm{0}\Rightarrow{a}_{\mathrm{1}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:{a}_{{n}−\mathrm{2}} ={a}_{\mathrm{2}} {a}_{{n}} +{a}_{\mathrm{1}} {a}_{{n}−\mathrm{1}} +{a}_{{n}−\mathrm{2}} {a}_{\mathrm{0}} \Rightarrow{a}_{{n}−\mathrm{2}} ={a}_{\mathrm{2}} {a}_{{n}} +{a}_{{n}−\mathrm{2}} \Rightarrow{a}_{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{Continuing}\:\mathrm{this}\:\mathrm{process},\:\mathrm{we}\:\mathrm{get}\:\mathrm{that}\:{a}_{{n}−\mathrm{1}} =\mathrm{0}\:\mathrm{and}\:\mathrm{2}=\mathrm{1}+{a}_{{n}} ^{\mathrm{2}} . \\ $$$$\mathrm{Hence}\:{a}_{{n}} =\pm\mathrm{1}.\:\mathrm{Therefore} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{p}\left({x}\right)=\mathrm{1}\pm{x}^{{n}} \\ $$$$\mathrm{Since}\:\mathrm{we}\:\mathrm{are}\:\mathrm{given}\:\mathrm{that}\:{p}\left(\mathrm{3}\right)=\mathrm{28}\:\mathrm{we}\:\mathrm{have} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{28}=\mathrm{1}\pm\mathrm{3}^{\mathrm{n}} \\ $$$$\mathrm{Therefore}\:{p}\left({x}\right)\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{1}−{x}^{{n}} .\:\mathrm{Thus},\:{p}\left({x}\right)=\mathrm{1}+{x}^{{n}} \:\mathrm{and} \\ $$$$\mathrm{28}=\mathrm{1}+\mathrm{3}^{{n}} \:\mathrm{and}\:\mathrm{hence}\:{n}=\mathrm{3}.\:\mathrm{So}\:{p}\left({x}\right)=\mathrm{1}+{x}^{\mathrm{3}} \:\mathrm{and}\:{p}\left(\mathrm{4}\right)=\mathrm{65}. \\ $$

Commented by mr W last updated on 11/Jan/22

good solution!

$${good}\:{solution}! \\ $$

Commented by Ar Brandon last updated on 11/Jan/22

����

Commented by Tawa11 last updated on 11/Jan/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com