Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 163854 by amin96 last updated on 11/Jan/22

solution with residu theorem  ∫_0 ^∞ (x^2 /(x^4 +2x^2 +2))dx=?

$$\boldsymbol{\mathrm{solution}}\:\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{residu}}\:\boldsymbol{\mathrm{theorem}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\boldsymbol{\mathrm{x}}^{\mathrm{4}} +\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{2}}\boldsymbol{\mathrm{dx}}=?\:\:\:\: \\ $$

Answered by Ar Brandon last updated on 11/Jan/22

I=∫_0 ^∞ (x^2 /(x^4 +2x^2 +2))dx=(1/2)∫_0 ^∞ (((x^2 +(√2))+(x^2 −(√2)))/(x^4 +2x^2 +2))dx     =(1/2)∫_0 ^∞ ((x^2 +(√2))/(x^4 +2x^2 +2))dx+(1/2)∫_0 ^∞ ((x^2 −(√2))/(x^4 +2x^2 +2))dx     =(1/2)∫_0 ^∞ ((1+((√2)/x^2 ))/(x^2 +2+(2/x^2 )))dx+(1/2)∫_0 ^∞ ((1−((√2)/x^2 ))/(x^2 +2+(2/x^2 )))dx     =(1/2)∫_0 ^∞ ((1+((√2)/x^2 ))/((x−((√2)/x))^2 +2+2(√2)))dx+(1/2)∫_0 ^∞ ((1−((√2)/x^2 ))/((x+((√2)/x))^2 +2−2(√2)))dx     =(1/2)∫_(−∞) ^(+∞) (du/(u^2 +(2+2(√2))))+(1/2)∫_(+∞) ^(+∞) (dv/(v^2 +2−2(√2)))     =(1/2)∙(1/( (√(2+2(√2)))))[arctan((u/( (√(2+2(√2))))))]_(−∞) ^(+∞) =(π/(2(√(2+2(√2)))))

$${I}=\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\left({x}^{\mathrm{2}} +\sqrt{\mathrm{2}}\right)+\left({x}^{\mathrm{2}} −\sqrt{\mathrm{2}}\right)}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}}{dx} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}} +\sqrt{\mathrm{2}}}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}}{dx}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{2}} −\sqrt{\mathrm{2}}}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}}{dx} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}+\frac{\sqrt{\mathrm{2}}}{{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} +\mathrm{2}+\frac{\mathrm{2}}{{x}^{\mathrm{2}} }}{dx}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} +\mathrm{2}+\frac{\mathrm{2}}{{x}^{\mathrm{2}} }}{dx} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}+\frac{\sqrt{\mathrm{2}}}{{x}^{\mathrm{2}} }}{\left({x}−\frac{\sqrt{\mathrm{2}}}{{x}}\right)^{\mathrm{2}} +\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}}{dx}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{{x}^{\mathrm{2}} }}{\left({x}+\frac{\sqrt{\mathrm{2}}}{{x}}\right)^{\mathrm{2}} +\mathrm{2}−\mathrm{2}\sqrt{\mathrm{2}}}{dx} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} \frac{{du}}{{u}^{\mathrm{2}} +\left(\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}\right)}+\frac{\mathrm{1}}{\mathrm{2}}\int_{+\infty} ^{+\infty} \frac{{dv}}{{v}^{\mathrm{2}} +\mathrm{2}−\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\centerdot\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}}}\left[\mathrm{arctan}\left(\frac{{u}}{\:\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}}}\right)\right]_{−\infty} ^{+\infty} =\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{2}}}} \\ $$

Commented by peter frank last updated on 11/Jan/22

great

$$\mathrm{great} \\ $$

Commented by amin96 last updated on 11/Jan/22

great sir. correct answer

$${great}\:{sir}.\:{correct}\:{answer} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com