Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 163921 by ajfour last updated on 11/Jan/22

Answered by mr W last updated on 12/Jan/22

R=radius of big circles  r=radius of small circles  semi diagonal=R+(√2)R=(√((R+r)^2 −R^2 ))+(√2)r  ((√2)+1)R−(√2)r=(√(2Rr+r^2 ))  r^2 −2((√2)+3)Rr+((√2)+1)^2 R^2 =0  (r/R)=(√2)+3−(√(((√2)+3)^2 −((√2)+1)^2 ))  ⇒(r/R)=(√2)+3−2(√((√2)+2))  area of parallelogram:  A_p =2R(√((R+r)^2 −R^2 ))=2R(√(2Rr+r^2 ))  area of square:  A_s =2(R+(√2)R)^2   ratio  (A_s /A_p ) =((2(R+(√2)R)^2 )/(2R(√(2Rr+r^2 ))))=(((1+(√2))^2 )/( (√((2+(r/R))((r/R))))))  (A_s /A_p ) =((3+2(√2))/( (√((5+(√2)−2(√((√2)+2)))(3+(√2)−2(√((√2)+2)))))))  (A_s /A_p ) ≈4.169

$${R}={radius}\:{of}\:{big}\:{circles} \\ $$$${r}={radius}\:{of}\:{small}\:{circles} \\ $$$${semi}\:{diagonal}={R}+\sqrt{\mathrm{2}}{R}=\sqrt{\left({R}+{r}\right)^{\mathrm{2}} −{R}^{\mathrm{2}} }+\sqrt{\mathrm{2}}{r} \\ $$$$\left(\sqrt{\mathrm{2}}+\mathrm{1}\right){R}−\sqrt{\mathrm{2}}{r}=\sqrt{\mathrm{2}{Rr}+{r}^{\mathrm{2}} } \\ $$$${r}^{\mathrm{2}} −\mathrm{2}\left(\sqrt{\mathrm{2}}+\mathrm{3}\right){Rr}+\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} {R}^{\mathrm{2}} =\mathrm{0} \\ $$$$\frac{{r}}{{R}}=\sqrt{\mathrm{2}}+\mathrm{3}−\sqrt{\left(\sqrt{\mathrm{2}}+\mathrm{3}\right)^{\mathrm{2}} −\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{r}}{{R}}=\sqrt{\mathrm{2}}+\mathrm{3}−\mathrm{2}\sqrt{\sqrt{\mathrm{2}}+\mathrm{2}} \\ $$$${area}\:{of}\:{parallelogram}: \\ $$$${A}_{{p}} =\mathrm{2}{R}\sqrt{\left({R}+{r}\right)^{\mathrm{2}} −{R}^{\mathrm{2}} }=\mathrm{2}{R}\sqrt{\mathrm{2}{Rr}+{r}^{\mathrm{2}} } \\ $$$${area}\:{of}\:{square}: \\ $$$${A}_{{s}} =\mathrm{2}\left({R}+\sqrt{\mathrm{2}}{R}\right)^{\mathrm{2}} \\ $$$${ratio} \\ $$$$\frac{{A}_{{s}} }{{A}_{{p}} }\:=\frac{\mathrm{2}\left({R}+\sqrt{\mathrm{2}}{R}\right)^{\mathrm{2}} }{\mathrm{2}{R}\sqrt{\mathrm{2}{Rr}+{r}^{\mathrm{2}} }}=\frac{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)^{\mathrm{2}} }{\:\sqrt{\left(\mathrm{2}+\frac{{r}}{{R}}\right)\left(\frac{{r}}{{R}}\right)}} \\ $$$$\frac{{A}_{{s}} }{{A}_{{p}} }\:=\frac{\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}}{\:\sqrt{\left(\mathrm{5}+\sqrt{\mathrm{2}}−\mathrm{2}\sqrt{\sqrt{\mathrm{2}}+\mathrm{2}}\right)\left(\mathrm{3}+\sqrt{\mathrm{2}}−\mathrm{2}\sqrt{\sqrt{\mathrm{2}}+\mathrm{2}}\right)}} \\ $$$$\frac{{A}_{{s}} }{{A}_{{p}} }\:\approx\mathrm{4}.\mathrm{169} \\ $$

Commented by Tawa11 last updated on 12/Jan/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Answered by ajfour last updated on 12/Jan/22

R+R(√2)=s(√2)  R+r+2(√(Rr))=2s  (√(r/R))+1=(√((2s)/R))  R=(2−(√2))s  r=R((√(2/(2−(√2))))−1)^2      =R((√(2+(√2)))−1)^2   A_p =4R(√((r+R)^2 −R^2 ))       =(4s^2 )(2−(√2))^2 {[((√(2+(√2)))−1)^2 +1]^2 −1}^(1/2)   (A_p /A_s )=(2−(√2))^2 {[((√(2+(√2)))−1)^2 +1]^2 −1}^(1/2)   ...

$${R}+{R}\sqrt{\mathrm{2}}={s}\sqrt{\mathrm{2}} \\ $$$${R}+{r}+\mathrm{2}\sqrt{{Rr}}=\mathrm{2}{s} \\ $$$$\sqrt{\frac{{r}}{{R}}}+\mathrm{1}=\sqrt{\frac{\mathrm{2}{s}}{{R}}} \\ $$$${R}=\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){s} \\ $$$${r}={R}\left(\sqrt{\frac{\mathrm{2}}{\mathrm{2}−\sqrt{\mathrm{2}}}}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\:\:={R}\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$${A}_{{p}} =\mathrm{4}{R}\sqrt{\left({r}+{R}\right)^{\mathrm{2}} −{R}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:=\left(\mathrm{4}{s}^{\mathrm{2}} \right)\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \left\{\left[\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}\right]^{\mathrm{2}} −\mathrm{1}\right\}^{\mathrm{1}/\mathrm{2}} \\ $$$$\frac{{A}_{{p}} }{{A}_{{s}} }=\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \left\{\left[\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}\right]^{\mathrm{2}} −\mathrm{1}\right\}^{\mathrm{1}/\mathrm{2}} \\ $$$$... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com