Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 163954 by mnjuly1970 last updated on 12/Jan/22

Answered by mathmax by abdo last updated on 13/Jan/22

Ψ=2∫_0 ^∞  ((x^2  e^x )/(sh(2x)))dx =_(2x=t)   2∫_0 ^∞   ((t^2  e^(t/2) )/(4sh(t)))(dt/2)=(1/4)∫_0 ^∞  ((t^(2 ) e^(t/2) )/((e^t −e^(−t) )/2))dt  =(1/2)∫_0 ^∞  ((t^2 e^(t/2) )/(e^t −e^(−t) ))dt =(1/2)∫_0 ^∞  ((t^2 e^(−t+(t/2)) )/(1−e^(−2t) ))dt  (1/2)∫_0 ^∞  t^(2 )  e^(−(t/2))  Σ_(n=0) ^(∞ )  e^(−2nt)  dt  =(1/2)Σ_(n=0) ^∞ ∫_0 ^∞  t^(2 )  e^(−(t/2)−2nt)  dt  A_n =∫_0 ^∞  t^2  e^(−(2n+(1/2))t)  dt =_((2n+(1/2))t=z)  ∫_0 ^∞ (z^2 /((2n+(1/2))^2  )) e^(−z)  (dz/((2n+(1/2))))  =(1/((2n+(1/2))^3 ))∫_0 ^∞  z^2  e^(−z) dz =((Γ(3))/((2n+(1/2))^3 )) ⇒  Ψ=((2!)/2)Σ_(n=0) ^∞  (1/((2n+(1/2))^3 ))=8Σ_(n=0) ^∞  (1/((4n+1)^3 ))=(8/4^3 )Σ_(n=0) ^(∞ ) (1/((n+(1/4))^3 ))  rest to find this sum using digamma function....

Ψ=20x2exsh(2x)dx=2x=t20t2et24sh(t)dt2=140t2et2etet2dt=120t2et2etetdt=120t2et+t21e2tdt120t2et2n=0e2ntdt=12n=00t2et22ntdtAn=0t2e(2n+12)tdt=(2n+12)t=z0z2(2n+12)2ezdz(2n+12)=1(2n+12)30z2ezdz=Γ(3)(2n+12)3Ψ=2!2n=01(2n+12)3=8n=01(4n+1)3=843n=01(n+14)3resttofindthissumusingdigammafunction....

Answered by Lordose last updated on 13/Jan/22

  I = ∫_0 ^( ∞) ((x^2 e^x )/(sinh(x)cosh(x)dx)) = 2∫_0 ^( ∞) x^2 e^x csch(2x)dx  I =^(x=(x/2))  (1/2)∫_0 ^( ∞) ((x^2 e^(x/2) )/(e^x (1−e^(−2x) )))dx =^(x=−ln(x)) (1/2)∫_0 ^( 1) ((x^(−(1/2)) ln^2 (x))/(1−x^2 ))dx  I = (1/2)∫_0 ^( 1) ((x^(−(1/2)) ln^2 (x))/(1−x^2 ))dx =^(x=x^(1/2) ) (1/(16))∫_0 ^( 1) ((x^((1/4)−1) ln^2 (x))/(1−x))dx  −∫_0 ^( 1) ((t^(x−1) ln^2 (x))/(1−t))dx = 𝛙^((2)) (x)  I = −(1/(16))𝛙^((2)) ((1/4)) = (7/2)𝛇(3) + (𝛑^3 /8)  𝛂 = (7/2) , 𝛃 = (1/8)  ∅sE

I=0x2exsinh(x)cosh(x)dx=20x2excsch(2x)dxI=x=x2120x2ex2ex(1e2x)dx=x=ln(x)1201x12ln2(x)1x2dxI=1201x12ln2(x)1x2dx=x=x1211601x141ln2(x)1xdx01tx1ln2(x)1tdx=ψ(2)(x)I=116ψ(2)(14)=72ζ(3)+π38α=72,β=18sE

Commented by mnjuly1970 last updated on 13/Jan/22

mercry sir lordos

mercrysirlordos

Answered by mindispower last updated on 13/Jan/22

=∫_0 ^∞ ((4x^2 e^(−x) )/((1+e^(−2x) )(1−e^(−2x) )))dx  =2(∫_0 ^∞ ((x^2 e^(−x) )/(1+e^(−2x) ))dx+∫_0 ^∞ ((x^2 e^(−x) )/(1−e^(−2x) )))  =2Σ_(n≥0) (∫_0 ^∞ x^2 (−1)^n e^(−(1+2n)x) dx+∫_0 ^∞ x^2 e^(−(1+2n)dx)   =2Σ_(n≥0) (((−1)^n )/((2n+1)^3 ))Γ(3)+2Σ_(n≥0) (1/((1+2n)^3 ))Γ(3)  =4β(3)+4(ζ(3)−((ζ(3))/8))  =4β(3)+(7/2)ζ(3)=(π^3 /8)+(7/2)ζ(3)  a+b=((29)/8)

=04x2ex(1+e2x)(1e2x)dx=2(0x2ex1+e2xdx+0x2ex1e2x)=2n0(0x2(1)ne(1+2n)xdx+0x2e(1+2n)dx=2n0(1)n(2n+1)3Γ(3)+2n01(1+2n)3Γ(3)=4β(3)+4(ζ(3)ζ(3)8)=4β(3)+72ζ(3)=π38+72ζ(3)a+b=298

Commented by mnjuly1970 last updated on 13/Jan/22

   very nice solution as always  sir power...

verynicesolutionasalwayssirpower...

Commented by mindispower last updated on 14/Jan/22

withe Pleasur nice day

withePleasurniceday

Commented by mnjuly1970 last updated on 14/Jan/22

Answered by mnjuly1970 last updated on 13/Jan/22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com