Question and Answers Forum

All Questions      Topic List

Oscillation and Waves Questions

Previous in All Question      Next in All Question      

Previous in Oscillation and Waves      Next in Oscillation and Waves      

Question Number 164009 by ajfour last updated on 12/Jan/22

Answered by mr W last updated on 13/Jan/22

Commented by mr W last updated on 13/Jan/22

C=center of rotation  G=center of mass of rod  y=(x^2 /a) with a=1  (dy/dx)=((2x)/a)  at B with x=(b/2)  tan φ=(2/a)×(b/2)=(b/a)  Δx=h  Δy=(2/a)×(b/2)Δx=(b/a)Δx=((bh)/a)  θ=((2Δy)/b)=((2bh)/(ab))=((2h)/a)  α=(d^2 θ/dt^2 )=(2/a)×(d^2 h/dt^2 )  I_C =((mb^2 )/(12))+m((b/(2 tan φ)))^2 =((mb^2 )/(12))+m(((ba)/(2b)))^2   I_C =((m(b^2 +3a^2 ))/(12))  I_C α=−mgh  ((m(b^2 +3a^2 ))/(12))×(2/a)×(d^2 h/dt^2 )=−mgh  (d^2 h/dt^2 )=−((6ag)/((b^2 +3a^2 )))h=−ω^2 h  (d^2 h/dt^2 )+ω^2 h=0  ⇒ harmonic motion  ω^2 =((6ag)/(b^2 +3a^2 ))  T=((2π)/ω)=((2π)/( (√((6ag)/(b^2 +3a^2 )))))=2π(√((b^2 +3a^2 )/(6ag)))  T=2π(√((b^2 +3a^2 )/(6ag)))

$${C}={center}\:{of}\:{rotation} \\ $$$${G}={center}\:{of}\:{mass}\:{of}\:{rod} \\ $$$${y}=\frac{{x}^{\mathrm{2}} }{{a}}\:{with}\:{a}=\mathrm{1} \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{2}{x}}{{a}} \\ $$$${at}\:{B}\:{with}\:{x}=\frac{{b}}{\mathrm{2}} \\ $$$$\mathrm{tan}\:\phi=\frac{\mathrm{2}}{{a}}×\frac{{b}}{\mathrm{2}}=\frac{{b}}{{a}} \\ $$$$\Delta{x}={h} \\ $$$$\Delta{y}=\frac{\mathrm{2}}{{a}}×\frac{{b}}{\mathrm{2}}\Delta{x}=\frac{{b}}{{a}}\Delta{x}=\frac{{bh}}{{a}} \\ $$$$\theta=\frac{\mathrm{2}\Delta{y}}{{b}}=\frac{\mathrm{2}{bh}}{{ab}}=\frac{\mathrm{2}{h}}{{a}} \\ $$$$\alpha=\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }=\frac{\mathrm{2}}{{a}}×\frac{{d}^{\mathrm{2}} {h}}{{dt}^{\mathrm{2}} } \\ $$$${I}_{{C}} =\frac{{mb}^{\mathrm{2}} }{\mathrm{12}}+{m}\left(\frac{{b}}{\mathrm{2}\:\mathrm{tan}\:\phi}\right)^{\mathrm{2}} =\frac{{mb}^{\mathrm{2}} }{\mathrm{12}}+{m}\left(\frac{{ba}}{\mathrm{2}{b}}\right)^{\mathrm{2}} \\ $$$${I}_{{C}} =\frac{{m}\left({b}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} \right)}{\mathrm{12}} \\ $$$${I}_{{C}} \alpha=−{mgh} \\ $$$$\frac{{m}\left({b}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} \right)}{\mathrm{12}}×\frac{\mathrm{2}}{{a}}×\frac{{d}^{\mathrm{2}} {h}}{{dt}^{\mathrm{2}} }=−{mgh} \\ $$$$\frac{{d}^{\mathrm{2}} {h}}{{dt}^{\mathrm{2}} }=−\frac{\mathrm{6}{ag}}{\left({b}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} \right)}{h}=−\omega^{\mathrm{2}} {h} \\ $$$$\frac{{d}^{\mathrm{2}} {h}}{{dt}^{\mathrm{2}} }+\omega^{\mathrm{2}} {h}=\mathrm{0}\:\:\Rightarrow\:{harmonic}\:{motion} \\ $$$$\omega^{\mathrm{2}} =\frac{\mathrm{6}{ag}}{{b}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} } \\ $$$${T}=\frac{\mathrm{2}\pi}{\omega}=\frac{\mathrm{2}\pi}{\:\sqrt{\frac{\mathrm{6}{ag}}{{b}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} }}}=\mathrm{2}\pi\sqrt{\frac{{b}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} }{\mathrm{6}{ag}}} \\ $$$${T}=\mathrm{2}\pi\sqrt{\frac{{b}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} }{\mathrm{6}{ag}}} \\ $$

Commented by Tawa11 last updated on 12/Jan/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Commented by mr W last updated on 13/Jan/22

is answer correct? i′m not sure.

$${is}\:{answer}\:{correct}?\:{i}'{m}\:{not}\:{sure}. \\ $$

Commented by ajfour last updated on 13/Jan/22

must be, sir. I could not find a way.  I will learn n check your solution  only now..   .^(            (√(−−))) _(                 ⌣)  .

$${must}\:{be},\:{sir}.\:{I}\:{could}\:{not}\:{find}\:{a}\:{way}. \\ $$$${I}\:{will}\:{learn}\:{n}\:{check}\:{your}\:{solution} \\ $$$${only}\:{now}..\:\:\:\underset{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\smile} {\overset{\:\:\:\:\:\:\:\:\:\:\:\:\sqrt{−−}} {.}}\:. \\ $$

Commented by mr W last updated on 13/Jan/22

the horizontal position of the rod  is not the only possible equilibrium  position of the rod in the bowl. it is  even not a stable equilibrium position  as we can image. i have opened a  new post with the question to find  other possible equilibrium positions  which the rod may have in the bowl.  please give your try to solve it sir!

$${the}\:{horizontal}\:{position}\:{of}\:{the}\:{rod} \\ $$$${is}\:{not}\:{the}\:{only}\:{possible}\:{equilibrium} \\ $$$${position}\:{of}\:{the}\:{rod}\:{in}\:{the}\:{bowl}.\:{it}\:{is} \\ $$$${even}\:{not}\:{a}\:{stable}\:{equilibrium}\:{position} \\ $$$${as}\:{we}\:{can}\:{image}.\:{i}\:{have}\:{opened}\:{a} \\ $$$${new}\:{post}\:{with}\:{the}\:{question}\:{to}\:{find} \\ $$$${other}\:{possible}\:{equilibrium}\:{positions} \\ $$$${which}\:{the}\:{rod}\:{may}\:{have}\:{in}\:{the}\:{bowl}. \\ $$$${please}\:{give}\:{your}\:{try}\:{to}\:{solve}\:{it}\:{sir}! \\ $$

Answered by ajfour last updated on 13/Jan/22

mgdy=Iωdω+mvdv  tan θ=(dy/dx)=2x∣_(x=b/2) =((ωb/2)/v)  ⇒  gb△x=((b^2 ω^2 )/(24))+(ω^2 /8)  ⇒   ω^2 =(((24bg)/(b^2 +3)))△x  ⇒  T=2π(√((b^2 +3)/(24bg)))

$${mgdy}={I}\omega{d}\omega+{mvdv} \\ $$$$\mathrm{tan}\:\theta=\frac{{dy}}{{dx}}=\mathrm{2}{x}\mid_{{x}={b}/\mathrm{2}} =\frac{\omega{b}/\mathrm{2}}{{v}} \\ $$$$\Rightarrow\:\:{gb}\bigtriangleup{x}=\frac{{b}^{\mathrm{2}} \omega^{\mathrm{2}} }{\mathrm{24}}+\frac{\omega^{\mathrm{2}} }{\mathrm{8}} \\ $$$$\Rightarrow\:\:\:\omega^{\mathrm{2}} =\left(\frac{\mathrm{24}{bg}}{{b}^{\mathrm{2}} +\mathrm{3}}\right)\bigtriangleup{x} \\ $$$$\Rightarrow\:\:{T}=\mathrm{2}\pi\sqrt{\frac{{b}^{\mathrm{2}} +\mathrm{3}}{\mathrm{24}{bg}}} \\ $$

Commented by mr W last updated on 14/Jan/22

to be honest, i havn′t understood your  workings yet.

$${to}\:{be}\:{honest},\:{i}\:{havn}'{t}\:{understood}\:{your} \\ $$$${workings}\:{yet}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com