Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 164027 by HongKing last updated on 13/Jan/22

Commented by HongKing last updated on 13/Jan/22

Yes my dear Sir

$$\mathrm{Yes}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir} \\ $$

Commented by mr W last updated on 13/Jan/22

now i got it.  A is the number of roots of  f(f(f(....)))=x.  A=2^(2020−1) .

$${now}\:{i}\:{got}\:{it}. \\ $$$${A}\:{is}\:{the}\:{number}\:{of}\:{roots}\:{of} \\ $$$${f}\left({f}\left({f}\left(....\right)\right)\right)={x}. \\ $$$${A}=\mathrm{2}^{\mathrm{2020}−\mathrm{1}} . \\ $$

Answered by mr W last updated on 13/Jan/22

due to symmetry we just consider x≥0.  f(x)=2x(√(1−x^2 ))≥0  let x=sin θ with 0≤θ≤(π/2)  f(x)=2 sin θ (√(1−sin^2  θ))=2 sin θ cos θ=sin 2θ  f(f(x))=sin (2×2θ)=sin (2^2 θ)  f(f(f(...f(x)))_(n times) =sin (2^n θ)  f(f(f(...f(x)))_(n times) =x≥0  ⇒sin (2^n θ)=sin θ  ⇒2^n θ=2kπ+θ ⇒θ=((2kπ)/(2^n −1)) or  ⇒2^n θ=(2m+1)π−θ ⇒θ=(((2m+1)π)/(2^n +1))  θ=((2kπ)/(2^n −1))≤(π/2) ⇒0≤k≤((2^n −1)/4)  θ=(((2m+1)π)/(2^n +1))≤(π/2) ⇒0≤m≤((2^n +1)/4)−(1/2)  x=sin ((2kπ)/(2^n −1)) or  x=sin (((2k+1)π)/(2^n +1))   with 0≤k≤2^(n−2) −1 and  n=2020    totally we have A=2^(n−1) =2^(2019)  roots.    A (mod 1000)=288

$${due}\:{to}\:{symmetry}\:{we}\:{just}\:{consider}\:{x}\geqslant\mathrm{0}. \\ $$$${f}\left({x}\right)=\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\geqslant\mathrm{0} \\ $$$${let}\:{x}=\mathrm{sin}\:\theta\:{with}\:\mathrm{0}\leqslant\theta\leqslant\frac{\pi}{\mathrm{2}} \\ $$$${f}\left({x}\right)=\mathrm{2}\:\mathrm{sin}\:\theta\:\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\theta}=\mathrm{2}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta=\mathrm{sin}\:\mathrm{2}\theta \\ $$$${f}\left({f}\left({x}\right)\right)=\mathrm{sin}\:\left(\mathrm{2}×\mathrm{2}\theta\right)=\mathrm{sin}\:\left(\mathrm{2}^{\mathrm{2}} \theta\right) \\ $$$$\underset{{n}\:{times}} {{f}\left({f}\left({f}\left(...{f}\left({x}\right)\right)\right)}=\mathrm{sin}\:\left(\mathrm{2}^{{n}} \theta\right)\right. \\ $$$$\underset{{n}\:{times}} {{f}\left({f}\left({f}\left(...{f}\left({x}\right)\right)\right)}={x}\geqslant\mathrm{0}\right. \\ $$$$\Rightarrow\mathrm{sin}\:\left(\mathrm{2}^{{n}} \theta\right)=\mathrm{sin}\:\theta \\ $$$$\Rightarrow\mathrm{2}^{{n}} \theta=\mathrm{2}{k}\pi+\theta\:\Rightarrow\theta=\frac{\mathrm{2}{k}\pi}{\mathrm{2}^{{n}} −\mathrm{1}}\:{or} \\ $$$$\Rightarrow\mathrm{2}^{{n}} \theta=\left(\mathrm{2}{m}+\mathrm{1}\right)\pi−\theta\:\Rightarrow\theta=\frac{\left(\mathrm{2}{m}+\mathrm{1}\right)\pi}{\mathrm{2}^{{n}} +\mathrm{1}} \\ $$$$\theta=\frac{\mathrm{2}{k}\pi}{\mathrm{2}^{{n}} −\mathrm{1}}\leqslant\frac{\pi}{\mathrm{2}}\:\Rightarrow\mathrm{0}\leqslant{k}\leqslant\frac{\mathrm{2}^{{n}} −\mathrm{1}}{\mathrm{4}} \\ $$$$\theta=\frac{\left(\mathrm{2}{m}+\mathrm{1}\right)\pi}{\mathrm{2}^{{n}} +\mathrm{1}}\leqslant\frac{\pi}{\mathrm{2}}\:\Rightarrow\mathrm{0}\leqslant{m}\leqslant\frac{\mathrm{2}^{{n}} +\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${x}=\mathrm{sin}\:\frac{\mathrm{2}{k}\pi}{\mathrm{2}^{{n}} −\mathrm{1}}\:{or} \\ $$$${x}=\mathrm{sin}\:\frac{\left(\mathrm{2}{k}+\mathrm{1}\right)\pi}{\mathrm{2}^{{n}} +\mathrm{1}}\: \\ $$$${with}\:\mathrm{0}\leqslant{k}\leqslant\mathrm{2}^{{n}−\mathrm{2}} −\mathrm{1}\:{and}\:\:{n}=\mathrm{2020} \\ $$$$ \\ $$$${totally}\:{we}\:{have}\:{A}=\mathrm{2}^{{n}−\mathrm{1}} =\mathrm{2}^{\mathrm{2019}} \:{roots}. \\ $$$$ \\ $$$${A}\:\left({mod}\:\mathrm{1000}\right)=\mathrm{288} \\ $$

Commented by HongKing last updated on 13/Jan/22

perfect my dear Sir thank you so much

$$\mathrm{perfect}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Commented by Rasheed.Sindhi last updated on 13/Jan/22

G_(  S  I_(!)   R ) ^(  R^( E ) A) T

$$\mathbb{G}_{\:\:\mathbb{S}\:\:\underset{!} {\mathbb{I}}\:\:\mathbb{R}\:} ^{\:\:\mathbb{R}^{\:\mathbb{E}\:} \mathbb{A}} \mathbb{T} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com