Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 164196 by HongKing last updated on 15/Jan/22

Evalute the sum:  Σ_(k=1) ^n  k ((π/n))^2 arctan (((kπ)/n))^2

$$\mathrm{Evalute}\:\mathrm{the}\:\mathrm{sum}: \\ $$$$\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\:\mathrm{k}\:\left(\frac{\pi}{\mathrm{n}}\right)^{\mathrm{2}} \mathrm{arctan}\:\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)^{\mathrm{2}} \\ $$

Answered by mathmax by abdo last updated on 15/Jan/22

S_n =(π/n)Σ_(k=1) ^n (((kπ)/n))arctan(((kπ)/n))^2 ⇒lim_(n→+∞) S_n =∫_0 ^π xarctan(x^2 )dx  =_(by parts) [(x^2 /2)arctan(x^2 )]_0 ^π −∫_0 ^π  (x^2 /2)((2x)/(1+x^4 ))dx  =(π^2 /2)arctan(π^2 )−∫_0 ^π  (x^3 /(1+x^4 ))dx  and  ∫_0 ^(π )  (x^3 /(1+x^4 ))dx=[(1/(4 ))ln(1+x^4 )]_0 ^π  =(1/4)ln(1+π^4 ) ⇒  lim_(n→+∞) S_n =(π^2 /2)arctan(π^2 )−(1/4)ln(1+π^4 )

$$\mathrm{S}_{\mathrm{n}} =\frac{\pi}{\mathrm{n}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)\mathrm{arctan}\left(\frac{\mathrm{k}\pi}{\mathrm{n}}\right)^{\mathrm{2}} \Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{S}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\pi} \mathrm{xarctan}\left(\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$$$=_{\mathrm{by}\:\mathrm{parts}} \left[\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\mathrm{arctan}\left(\mathrm{x}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\pi} −\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\frac{\mathrm{2x}}{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\mathrm{dx} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}\mathrm{arctan}\left(\pi^{\mathrm{2}} \right)−\int_{\mathrm{0}} ^{\pi} \:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\mathrm{dx}\:\:\mathrm{and} \\ $$$$\int_{\mathrm{0}} ^{\pi\:} \:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\mathrm{dx}=\left[\frac{\mathrm{1}}{\mathrm{4}\:}\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{4}} \right)\right]_{\mathrm{0}} ^{\pi} \:=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\left(\mathrm{1}+\pi^{\mathrm{4}} \right)\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{S}_{\mathrm{n}} =\frac{\pi^{\mathrm{2}} }{\mathrm{2}}\mathrm{arctan}\left(\pi^{\mathrm{2}} \right)−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{ln}\left(\mathrm{1}+\pi^{\mathrm{4}} \right) \\ $$

Commented by HongKing last updated on 15/Jan/22

thank you so much my dear Sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{my}\:\mathrm{dear}\:\mathrm{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com