Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 164206 by abdurehime last updated on 15/Jan/22

Commented by abdurehime last updated on 15/Jan/22

what is the value???

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}??? \\ $$

Commented by mr W last updated on 15/Jan/22

1^2 +2^2 +...+n^2 =((n(n+1)(2n+1))/6)

$$\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +...+{n}^{\mathrm{2}} =\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$

Commented by abdurehime last updated on 15/Jan/22

how did you get?? show me the process please?

$$\mathrm{how}\:\mathrm{did}\:\mathrm{you}\:\mathrm{get}??\:\mathrm{show}\:\mathrm{me}\:\mathrm{the}\:\mathrm{process}\:\mathrm{please}? \\ $$$$ \\ $$

Commented by cortano1 last updated on 15/Jan/22

consider (k+1)^2 −k^2 = 2k+1   Σ_(k=1) ^n ((k+1)^2 −k^2 ) = Σ_(k=1) ^n (2k+1)   (n+1)^2 −1 = 2Σ_(k=1) ^n k+n   n^2 +n =2 Σ_(k=1) ^n k ⇒Σ_(k=1) ^n k = ((n^2 +n)/2)     (k+1)^3 −k^3 = 3k^2 +3k+1   Σ_(k=1) ^n ((k+1)^3 −k^3 )= 3Σ_(k=1) ^n +3Σ_(k=1) ^n +n   (n+1)^3 −1=3Σ_(k=1) ^n k^2 +((3n^2 +3n)/2) +n   3Σ_(k=1) ^n k^2  = n^3 +3n^2 +3n−(((3n^2 +5n)/2))         Σ_(k=1) ^n k^2  = ((2n^3 +3n^2 +n)/6) =((n(2n+1)(n+1))/6)

$${consider}\:\left({k}+\mathrm{1}\right)^{\mathrm{2}} −{k}^{\mathrm{2}} =\:\mathrm{2}{k}+\mathrm{1} \\ $$$$\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\left({k}+\mathrm{1}\right)^{\mathrm{2}} −{k}^{\mathrm{2}} \right)\:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{2}{k}+\mathrm{1}\right) \\ $$$$\:\left({n}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}\:=\:\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}+{n} \\ $$$$\:{n}^{\mathrm{2}} +{n}\:=\mathrm{2}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\:\Rightarrow\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\:=\:\frac{{n}^{\mathrm{2}} +{n}}{\mathrm{2}} \\ $$$$ \\ $$$$\:\left({k}+\mathrm{1}\right)^{\mathrm{3}} −{k}^{\mathrm{3}} =\:\mathrm{3}{k}^{\mathrm{2}} +\mathrm{3}{k}+\mathrm{1} \\ $$$$\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\left({k}+\mathrm{1}\right)^{\mathrm{3}} −{k}^{\mathrm{3}} \right)=\:\mathrm{3}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}+\mathrm{3}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}+{n} \\ $$$$\:\left({n}+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{1}=\mathrm{3}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} +\frac{\mathrm{3}{n}^{\mathrm{2}} +\mathrm{3}{n}}{\mathrm{2}}\:+{n} \\ $$$$\:\mathrm{3}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} \:=\:{n}^{\mathrm{3}} +\mathrm{3}{n}^{\mathrm{2}} +\mathrm{3}{n}−\left(\frac{\mathrm{3}{n}^{\mathrm{2}} +\mathrm{5}{n}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} \:=\:\frac{\mathrm{2}{n}^{\mathrm{3}} +\mathrm{3}{n}^{\mathrm{2}} +{n}}{\mathrm{6}}\:=\frac{{n}\left(\mathrm{2}{n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$

Commented by bobhans last updated on 16/Jan/22

 nice !

$$\:\mathrm{nice}\:! \\ $$

Answered by MJS_new last updated on 15/Jan/22

one possible process:  s_n =Σ_(j=1) ^n j^2   make a list of the first few s_n   write σ_n ^((1)) =s_(n+1) −s_n  below  write σ_n ^((2)) =σ_(n+1) ^((1)) −σ_n ^((1))  below  continue until you get a constant (σ_n ^((k)) =σ_(n+1) ^((k)) )  s          1     5     14     30     55  σ^((1))          4     9      16      25  σ^((2))               5       7       9  σ^((3))                    2       2  k=3 ⇒ we′ll get a polynome of 3^(rd)  degree  s_n =c_3 n^3 +c_2 n^2 +c_1 n+c_0   k+1=4 constants ⇒ we need 4 equations  1=c_3 +c_2 +c_1 +c_0   5=8c_3 +4c_2 +2c_1 +c_0   14=27c_3 +9c_2 +3c_1 +c_0   30=64c_3 +16c_2 +4c_1 +c_0   solve this system ⇒  c_3 =(1/3)∧c_2 =(1/2)∧c_1 =(1/6)∧c_0 =0  ⇒  s_n =(n^3 /3)+(n^2 /2)+(n/6)=((n(n+1)(2n+1))/6)

$$\mathrm{one}\:\mathrm{possible}\:\mathrm{process}: \\ $$$${s}_{{n}} =\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}{j}^{\mathrm{2}} \\ $$$$\mathrm{make}\:\mathrm{a}\:\mathrm{list}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{few}\:{s}_{{n}} \\ $$$$\mathrm{write}\:\sigma_{{n}} ^{\left(\mathrm{1}\right)} ={s}_{{n}+\mathrm{1}} −{s}_{{n}} \:\mathrm{below} \\ $$$$\mathrm{write}\:\sigma_{{n}} ^{\left(\mathrm{2}\right)} =\sigma_{{n}+\mathrm{1}} ^{\left(\mathrm{1}\right)} −\sigma_{{n}} ^{\left(\mathrm{1}\right)} \:\mathrm{below} \\ $$$$\mathrm{continue}\:\mathrm{until}\:\mathrm{you}\:\mathrm{get}\:\mathrm{a}\:\mathrm{constant}\:\left(\sigma_{{n}} ^{\left({k}\right)} =\sigma_{{n}+\mathrm{1}} ^{\left({k}\right)} \right) \\ $$$${s}\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:\:\:\:\mathrm{5}\:\:\:\:\:\mathrm{14}\:\:\:\:\:\mathrm{30}\:\:\:\:\:\mathrm{55} \\ $$$$\sigma^{\left(\mathrm{1}\right)} \:\:\:\:\:\:\:\:\:\mathrm{4}\:\:\:\:\:\mathrm{9}\:\:\:\:\:\:\mathrm{16}\:\:\:\:\:\:\mathrm{25} \\ $$$$\sigma^{\left(\mathrm{2}\right)} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}\:\:\:\:\:\:\:\mathrm{7}\:\:\:\:\:\:\:\mathrm{9} \\ $$$$\sigma^{\left(\mathrm{3}\right)} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\:\:\:\:\:\:\:\mathrm{2} \\ $$$${k}=\mathrm{3}\:\Rightarrow\:\mathrm{we}'\mathrm{ll}\:\mathrm{get}\:\mathrm{a}\:\mathrm{polynome}\:\mathrm{of}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{degree} \\ $$$${s}_{{n}} ={c}_{\mathrm{3}} {n}^{\mathrm{3}} +{c}_{\mathrm{2}} {n}^{\mathrm{2}} +{c}_{\mathrm{1}} {n}+{c}_{\mathrm{0}} \\ $$$${k}+\mathrm{1}=\mathrm{4}\:\mathrm{constants}\:\Rightarrow\:\mathrm{we}\:\mathrm{need}\:\mathrm{4}\:\mathrm{equations} \\ $$$$\mathrm{1}={c}_{\mathrm{3}} +{c}_{\mathrm{2}} +{c}_{\mathrm{1}} +{c}_{\mathrm{0}} \\ $$$$\mathrm{5}=\mathrm{8}{c}_{\mathrm{3}} +\mathrm{4}{c}_{\mathrm{2}} +\mathrm{2}{c}_{\mathrm{1}} +{c}_{\mathrm{0}} \\ $$$$\mathrm{14}=\mathrm{27}{c}_{\mathrm{3}} +\mathrm{9}{c}_{\mathrm{2}} +\mathrm{3}{c}_{\mathrm{1}} +{c}_{\mathrm{0}} \\ $$$$\mathrm{30}=\mathrm{64}{c}_{\mathrm{3}} +\mathrm{16}{c}_{\mathrm{2}} +\mathrm{4}{c}_{\mathrm{1}} +{c}_{\mathrm{0}} \\ $$$$\mathrm{solve}\:\mathrm{this}\:\mathrm{system}\:\Rightarrow \\ $$$${c}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{3}}\wedge{c}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\wedge{c}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{6}}\wedge{c}_{\mathrm{0}} =\mathrm{0} \\ $$$$\Rightarrow \\ $$$${s}_{{n}} =\frac{{n}^{\mathrm{3}} }{\mathrm{3}}+\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{{n}}{\mathrm{6}}=\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$

Commented by Rasheed.Sindhi last updated on 16/Jan/22

G_(  S  I_(!)   R ) ^(  R^( E ) A) T

$$\mathbb{G}_{\:\:\mathbb{S}\:\:\underset{!} {\mathbb{I}}\:\:\mathbb{R}\:} ^{\:\:\mathbb{R}^{\:\mathbb{E}\:} \mathbb{A}} \mathbb{T} \\ $$

Answered by ajfour last updated on 16/Jan/22

  Σ_(r=1) ^n r(r+1)(r+2)..(r+m)   =((n(n+1)(n+2)...(n+m)(n+m+1))/(m+2))  here   Σr^2 =Σr(r+1)−Σr        =((n(n+1)(n+2))/3)−((n(n+1))/2)       =((n(n+1))/6){2(n+2)−3}  ⇒  Σ_(r=1) ^n r^2 =((n(n+1)(2n+1))/6)

$$\:\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}\left({r}+\mathrm{1}\right)\left({r}+\mathrm{2}\right)..\left({r}+{m}\right) \\ $$$$\:=\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)...\left({n}+{m}\right)\left({n}+{m}+\mathrm{1}\right)}{{m}+\mathrm{2}} \\ $$$${here}\:\:\:\Sigma{r}^{\mathrm{2}} =\Sigma{r}\left({r}+\mathrm{1}\right)−\Sigma{r} \\ $$$$\:\:\:\:\:\:=\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{\mathrm{3}}−\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{6}}\left\{\mathrm{2}\left({n}+\mathrm{2}\right)−\mathrm{3}\right\} \\ $$$$\Rightarrow\:\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}^{\mathrm{2}} =\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com