Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 164256 by ajfour last updated on 15/Jan/22

Answered by ajfour last updated on 16/Jan/22

A & B represent points and also  forces at those points respectively.  q=−(2acos θ−p)  2p=tan α  2q=−tan β  Torque about B   (A_y +B_y )acos θ=A_y (2acos θ)+A_x (2asin θ)         ....(i)  A_x =B_x   , A_x =A_y tan α=2pA_y   B_x =B_y tan β=−2qB_y   ⇒   A_x =2(2acos θ−p)B_y      2asin θ=p^2 −q^2   ⇒  now ((2sin θ)/a)=((p/a))^2 −(2cos θ−(p/a))^2   ⇒  ((2sin θ)/a)=4((p/a))cos θ−4cos^2 θ  ⇒   (p/a)=t=((tan θ)/(2a))+cos θ  from  ....(i)  1+(2/(2(2cos θ−(p/a))))=2+4ptan θ  ⇒  1+4atan θ(((tan θ)/(2a))+cos θ)            =(1/(cos θ−((tan θ)/(2a))))  ⇒  cos θ−((tan θ)/(2a))+2tan^2 θcos θ     −((tan^2 θ)/a)+4asin θcos θ                       −2sin θtan θ    =  1  ⇒  2acos^3 θ−sin θcos θ+4asin^2 θcos θ     −2sin^2 θ+8a^2 sin θcos^3 θ           −4asin^2 θcos θ=2acos^2 θ

A&Brepresentpointsandalsoforcesatthosepointsrespectively.q=(2acosθp)2p=tanα2q=tanβTorqueaboutB(Ay+By)acosθ=Ay(2acosθ)+Ax(2asinθ)....(i)Ax=Bx,Ax=Aytanα=2pAyBx=Bytanβ=2qByAx=2(2acosθp)By2asinθ=p2q2now2sinθa=(pa)2(2cosθpa)22sinθa=4(pa)cosθ4cos2θpa=t=tanθ2a+cosθfrom....(i)1+22(2cosθpa)=2+4ptanθ1+4atanθ(tanθ2a+cosθ)=1cosθtanθ2acosθtanθ2a+2tan2θcosθtan2θa+4asinθcosθ2sinθtanθ=12acos3θsinθcosθ+4asin2θcosθ2sin2θ+8a2sinθcos3θ4asin2θcosθ=2acos2θ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com