Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 16430 by Tinkutara last updated on 22/Jun/17

In ΔABC with usual notation  (r_1 /(bc)) + (r_2 /(ca)) + (r_3 /(ab)) is  (1) (1/r) − (1/R)  (2) (1/r) − (1/(2R))  (3) (1/r) + (1/(2R))  (4) (1/r) + (1/R)

$$\mathrm{In}\:\Delta{ABC}\:\mathrm{with}\:\mathrm{usual}\:\mathrm{notation} \\ $$$$\frac{{r}_{\mathrm{1}} }{{bc}}\:+\:\frac{{r}_{\mathrm{2}} }{{ca}}\:+\:\frac{{r}_{\mathrm{3}} }{{ab}}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\frac{\mathrm{1}}{{r}}\:−\:\frac{\mathrm{1}}{{R}} \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{1}}{{r}}\:−\:\frac{\mathrm{1}}{\mathrm{2}{R}} \\ $$$$\left(\mathrm{3}\right)\:\frac{\mathrm{1}}{{r}}\:+\:\frac{\mathrm{1}}{\mathrm{2}{R}} \\ $$$$\left(\mathrm{4}\right)\:\frac{\mathrm{1}}{{r}}\:+\:\frac{\mathrm{1}}{{R}} \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/Jun/17

answer (2)

$${answer}\:\left(\mathrm{2}\right)\: \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 23/Jun/17

because this formula is in any trianvles  you can compute it for a equilateral  triangle and find the right answer.  in equilateral triangle:  1)R=2r  r_a =r_b =r_c =(S/(p−a))=((a^2 ((√3)/4))/(((3a)/2)−a))=a((√3)/2)=2RsinA.((√3)/2)=  =2R×((√3)/2).((√3)/2)=((3R)/2)  ⇒Σ(r_a /(bc))=3×((a((√3)/2))/a^2 )=3×(((3R)/2)/(3R^2 ))=(3/(2R))  answer(1):(1/r)−(1/R)=((R−r)/(r.R))=((R−.5R)/(.5R.R))=(1/R)  answer(2):(1/r)−(1/(2R))=((2R−r)/(2R.r))=((2R−.5R)/(2R×.5R))=(3/(2R))  answer(3):(1/r)+(1/(2R))=((2R+r)/(2R.r))=((2R+.5R)/(2R×.5R))=(5/(2R))  answer(4):(1/r)+(1/R)=((R+r)/(R.r))=((R+.5R)/(R×.5R))=(3/R).

$${because}\:{this}\:{formula}\:{is}\:{in}\:{any}\:{trianvles} \\ $$$${you}\:{can}\:{compute}\:{it}\:{for}\:{a}\:{equilateral} \\ $$$${triangle}\:{and}\:{find}\:{the}\:{right}\:{answer}. \\ $$$${in}\:{equilateral}\:{triangle}: \\ $$$$\left.\mathrm{1}\right){R}=\mathrm{2}{r} \\ $$$${r}_{{a}} ={r}_{{b}} ={r}_{{c}} =\frac{{S}}{{p}−{a}}=\frac{{a}^{\mathrm{2}} \frac{\sqrt{\mathrm{3}}}{\mathrm{4}}}{\frac{\mathrm{3}{a}}{\mathrm{2}}−{a}}={a}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\mathrm{2}{RsinA}.\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}= \\ $$$$=\mathrm{2}{R}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}.\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}=\frac{\mathrm{3}{R}}{\mathrm{2}} \\ $$$$\Rightarrow\Sigma\frac{{r}_{{a}} }{{bc}}=\mathrm{3}×\frac{{a}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}{{a}^{\mathrm{2}} }=\mathrm{3}×\frac{\frac{\mathrm{3}{R}}{\mathrm{2}}}{\mathrm{3}{R}^{\mathrm{2}} }=\frac{\mathrm{3}}{\mathrm{2}{R}} \\ $$$${answer}\left(\mathrm{1}\right):\frac{\mathrm{1}}{{r}}−\frac{\mathrm{1}}{{R}}=\frac{{R}−{r}}{{r}.{R}}=\frac{{R}−.\mathrm{5}{R}}{.\mathrm{5}{R}.{R}}=\frac{\mathrm{1}}{{R}} \\ $$$${answer}\left(\mathrm{2}\right):\frac{\mathrm{1}}{{r}}−\frac{\mathrm{1}}{\mathrm{2}{R}}=\frac{\mathrm{2}{R}−{r}}{\mathrm{2}{R}.{r}}=\frac{\mathrm{2}{R}−.\mathrm{5}{R}}{\mathrm{2}{R}×.\mathrm{5}{R}}=\frac{\mathrm{3}}{\mathrm{2}{R}} \\ $$$${answer}\left(\mathrm{3}\right):\frac{\mathrm{1}}{{r}}+\frac{\mathrm{1}}{\mathrm{2}{R}}=\frac{\mathrm{2}{R}+{r}}{\mathrm{2}{R}.{r}}=\frac{\mathrm{2}{R}+.\mathrm{5}{R}}{\mathrm{2}{R}×.\mathrm{5}{R}}=\frac{\mathrm{5}}{\mathrm{2}{R}} \\ $$$${answer}\left(\mathrm{4}\right):\frac{\mathrm{1}}{{r}}+\frac{\mathrm{1}}{{R}}=\frac{{R}+{r}}{{R}.{r}}=\frac{{R}+.\mathrm{5}{R}}{{R}×.\mathrm{5}{R}}=\frac{\mathrm{3}}{{R}}. \\ $$

Answered by Tinkutara last updated on 06/Jul/17

Using r_1  = 4R sin (A/2) cos (B/2) cos (C/2) and  r = 4R sin (A/2) sin (B/2) sin (C/2), we get  (r_1 /(bc)) = ((4R sin (A/2) cos (B/2) cos (C/2))/(16R^2  sin (B/2) sin (C/2) cos (B/2) cos (C/2)))  = ((sin (A/2))/(4R sin (B/2) sin (C/2)))  Similarly we write all the terms.  (r_1 /(bc)) + (r_2 /(ca)) + (r_3 /(ab)) = (1/(4R sin (A/2) sin (B/2) sin (C/2)))(sin^2  (A/2) + sin^2  (B/2) + sin^2  (C/2))  = (1/(2r))(1 − cos A + 1 − cos B + 1 − cos C)  = (1/(2r))(3 − 1 − (r/R)) = (1/r) − (1/(2R))

$$\mathrm{Using}\:{r}_{\mathrm{1}} \:=\:\mathrm{4}{R}\:\mathrm{sin}\:\frac{{A}}{\mathrm{2}}\:\mathrm{cos}\:\frac{{B}}{\mathrm{2}}\:\mathrm{cos}\:\frac{{C}}{\mathrm{2}}\:\mathrm{and} \\ $$$${r}\:=\:\mathrm{4}{R}\:\mathrm{sin}\:\frac{{A}}{\mathrm{2}}\:\mathrm{sin}\:\frac{{B}}{\mathrm{2}}\:\mathrm{sin}\:\frac{{C}}{\mathrm{2}},\:\mathrm{we}\:\mathrm{get} \\ $$$$\frac{{r}_{\mathrm{1}} }{{bc}}\:=\:\frac{\mathrm{4}{R}\:\mathrm{sin}\:\frac{{A}}{\mathrm{2}}\:\mathrm{cos}\:\frac{{B}}{\mathrm{2}}\:\mathrm{cos}\:\frac{{C}}{\mathrm{2}}}{\mathrm{16}{R}^{\mathrm{2}} \:\mathrm{sin}\:\frac{{B}}{\mathrm{2}}\:\mathrm{sin}\:\frac{{C}}{\mathrm{2}}\:\mathrm{cos}\:\frac{{B}}{\mathrm{2}}\:\mathrm{cos}\:\frac{{C}}{\mathrm{2}}} \\ $$$$=\:\frac{\mathrm{sin}\:\frac{{A}}{\mathrm{2}}}{\mathrm{4}{R}\:\mathrm{sin}\:\frac{{B}}{\mathrm{2}}\:\mathrm{sin}\:\frac{{C}}{\mathrm{2}}} \\ $$$$\mathrm{Similarly}\:\mathrm{we}\:\mathrm{write}\:\mathrm{all}\:\mathrm{the}\:\mathrm{terms}. \\ $$$$\frac{{r}_{\mathrm{1}} }{{bc}}\:+\:\frac{{r}_{\mathrm{2}} }{{ca}}\:+\:\frac{{r}_{\mathrm{3}} }{{ab}}\:=\:\frac{\mathrm{1}}{\mathrm{4}{R}\:\mathrm{sin}\:\frac{{A}}{\mathrm{2}}\:\mathrm{sin}\:\frac{{B}}{\mathrm{2}}\:\mathrm{sin}\:\frac{{C}}{\mathrm{2}}}\left(\mathrm{sin}^{\mathrm{2}} \:\frac{{A}}{\mathrm{2}}\:+\:\mathrm{sin}^{\mathrm{2}} \:\frac{{B}}{\mathrm{2}}\:+\:\mathrm{sin}^{\mathrm{2}} \:\frac{{C}}{\mathrm{2}}\right) \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}{r}}\left(\mathrm{1}\:−\:\mathrm{cos}\:{A}\:+\:\mathrm{1}\:−\:\mathrm{cos}\:{B}\:+\:\mathrm{1}\:−\:\mathrm{cos}\:{C}\right) \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}{r}}\left(\mathrm{3}\:−\:\mathrm{1}\:−\:\frac{{r}}{{R}}\right)\:=\:\frac{\mathrm{1}}{{r}}\:−\:\frac{\mathrm{1}}{\mathrm{2}{R}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com