Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 164462 by ajfour last updated on 17/Jan/22

Find x, such that f(x) is minimum.  f(x)={((√(c^2 −x^2 ))/(c−x))−(c−x)}^2

Findx,suchthatf(x)isminimum.f(x)={c2x2cx(cx)}2

Commented by ajfour last updated on 17/Jan/22

did.

did.

Commented by MJS_new last updated on 17/Jan/22

no x on the rhs... please correct

noxontherhs...pleasecorrect

Answered by MJS_new last updated on 17/Jan/22

(√(f(x)))=0 has one solution for c∈R  ⇒  min(f(x))=0 at f(x)=0  ⇒  ((√(c^2 −x^2 ))/(c−x))−(c−x)=0  ⇔  x^3 −3cx^2 +(3c^2 +1)x−c(c^2 −1)=0  ⇒  x=c+((−c+(√((27c^2 +1)/(27)))))^(1/3) −((c+(√((27c^2 +1)/(27)))))^(1/3)

f(x)=0hasonesolutionforcRmin(f(x))=0atf(x)=0c2x2cx(cx)=0x33cx2+(3c2+1)xc(c21)=0x=c+c+27c2+1273c+27c2+1273

Answered by mr W last updated on 17/Jan/22

f(x)={((√(c^2 −x^2 ))/(c−x))−(c−x)}^2 ≥0  f(x)_(min) =0 when   ((√(c^2 −x^2 ))/(c−x))−(c−x)=0  (√(c^2 −x^2 ))=(c−x)^2   c+x=(c−x)^3   (c−x)^3 +(c−x)−2c=0  let t=c−x  t^3 +t−2c=0  t=(((√(c^2 +(1/(27))))+c))^(1/3) −(((√(c^2 +(1/(27))))−c))^(1/3)   ⇒x=c−(((√(c^2 +(1/(27))))+c))^(1/3) +(((√(c^2 +(1/(27))))−c))^(1/3)

f(x)={c2x2cx(cx)}20f(x)min=0whenc2x2cx(cx)=0c2x2=(cx)2c+x=(cx)3(cx)3+(cx)2c=0lett=cxt3+t2c=0t=c2+127+c3c2+127c3x=cc2+127+c3+c2+127c3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com