Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 164468 by ajfour last updated on 17/Jan/22

Answered by mr W last updated on 18/Jan/22

Commented by mr W last updated on 18/Jan/22

sin α=(r/R)=λ  sin β=((R−2r)/R)=1−2λ  sin γ=((3r−R)/(R−r))=((3λ−1)/(1−λ))  γ=α+β  sin γ=sin (α+β)  ((3λ−1)/(1−λ))=λ(√(1−(1−2λ)^2 ))+(1−2λ)(√(1−λ^2 ))  ((3λ−1)/(1−λ))=2λ(√(λ(1−λ)))+(1−2λ)(√(1−λ^2 ))  λ=(r/R)≈0.4362

$$\mathrm{sin}\:\alpha=\frac{{r}}{{R}}=\lambda \\ $$$$\mathrm{sin}\:\beta=\frac{{R}−\mathrm{2}{r}}{{R}}=\mathrm{1}−\mathrm{2}\lambda \\ $$$$\mathrm{sin}\:\gamma=\frac{\mathrm{3}{r}−{R}}{{R}−{r}}=\frac{\mathrm{3}\lambda−\mathrm{1}}{\mathrm{1}−\lambda} \\ $$$$\gamma=\alpha+\beta \\ $$$$\mathrm{sin}\:\gamma=\mathrm{sin}\:\left(\alpha+\beta\right) \\ $$$$\frac{\mathrm{3}\lambda−\mathrm{1}}{\mathrm{1}−\lambda}=\lambda\sqrt{\mathrm{1}−\left(\mathrm{1}−\mathrm{2}\lambda\right)^{\mathrm{2}} }+\left(\mathrm{1}−\mathrm{2}\lambda\right)\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} } \\ $$$$\frac{\mathrm{3}\lambda−\mathrm{1}}{\mathrm{1}−\lambda}=\mathrm{2}\lambda\sqrt{\lambda\left(\mathrm{1}−\lambda\right)}+\left(\mathrm{1}−\mathrm{2}\lambda\right)\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} } \\ $$$$\lambda=\frac{{r}}{{R}}\approx\mathrm{0}.\mathrm{4362} \\ $$

Commented by ajfour last updated on 19/Jan/22

Thank you Sir. Indeed correct.

$${Thank}\:{you}\:{Sir}.\:{Indeed}\:{correct}. \\ $$

Commented by mr W last updated on 19/Jan/22

i didn′t try if exact solution can be  obtained.

$${i}\:{didn}'{t}\:{try}\:{if}\:{exact}\:{solution}\:{can}\:{be} \\ $$$${obtained}. \\ $$

Commented by mr W last updated on 18/Jan/22

Answered by ajfour last updated on 20/Jan/22

Commented by ajfour last updated on 21/Jan/22

Thank you very very much, sir.

$${Thank}\:{you}\:{very}\:{very}\:{much},\:{sir}. \\ $$

Commented by ajfour last updated on 21/Jan/22

tan (((90°−θ)/2))=(r/(R−r+(√(R^2 −r^2 ))))=p  sec θ=((R−r)/(3r−R))=((t−1)/(3−t))        (∀  t=(R/r)>2)  ⇒  ((1−tan (θ/2))/(1+tan (θ/2)))=p  tan (θ/2)=((1−p)/(1+p))     say   (R/r)=t   ⇒  tan (θ/2)=((1−((1/(t−1+(√(t^2 −1))))))/(1+((1/(t−1+(√(t^2 −1)))))))       =(((√(t^2 −1))+t−2)/( t+(√(t^2 −1))))=((sec θ−1)/(tan θ))  &     sec^2 θ=1+tan^2 θ=(((t−1)/(3−t)))^2   (((√(t^2 −1))+t−2)/( t+(√(t^2 −1))))=(((((2t−4)/(3−t))))/( ((√(4t−8))/(3−t))))=(√(t−2))  ⇒ (t−2+(√(t^2 −1)))(t−(√(t^2 −1)))=(√(t−2))    let       t−(√(t^2 −1))=p            ⇒ t+(√(t^2 −1))=(1/p)  &   2t=p+(1/p)  ⇒   2((1/p)−2)^2 p^2 =p+(1/p)−4  ⇒  2+8p^2 −8p=p+(1/p)−4  ⇒    8p^3 −9p^2 +6p−1=0           p≈0.22961          (1/t)=((2p)/((p^2 +1)))≈0.4362 .

$$\mathrm{tan}\:\left(\frac{\mathrm{90}°−\theta}{\mathrm{2}}\right)=\frac{{r}}{{R}−{r}+\sqrt{{R}^{\mathrm{2}} −{r}^{\mathrm{2}} }}={p} \\ $$$$\mathrm{sec}\:\theta=\frac{{R}−{r}}{\mathrm{3}{r}−{R}}=\frac{{t}−\mathrm{1}}{\mathrm{3}−{t}}\:\:\:\:\:\:\:\:\left(\forall\:\:{t}=\frac{{R}}{{r}}>\mathrm{2}\right) \\ $$$$\Rightarrow\:\:\frac{\mathrm{1}−\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}{\mathrm{1}+\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}={p} \\ $$$$\mathrm{tan}\:\frac{\theta}{\mathrm{2}}=\frac{\mathrm{1}−{p}}{\mathrm{1}+{p}}\:\:\: \\ $$$${say}\:\:\:\frac{{R}}{{r}}={t}\:\:\:\Rightarrow\:\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}=\frac{\mathrm{1}−\left(\frac{\mathrm{1}}{{t}−\mathrm{1}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}\right)}{\mathrm{1}+\left(\frac{\mathrm{1}}{{t}−\mathrm{1}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}\right)} \\ $$$$\:\:\:\:\:=\frac{\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}+{t}−\mathrm{2}}{\:{t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}=\frac{\mathrm{sec}\:\theta−\mathrm{1}}{\mathrm{tan}\:\theta} \\ $$$$\&\:\:\:\:\:\mathrm{sec}\:^{\mathrm{2}} \theta=\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \theta=\left(\frac{{t}−\mathrm{1}}{\mathrm{3}−{t}}\right)^{\mathrm{2}} \\ $$$$\frac{\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}+{t}−\mathrm{2}}{\:{t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}=\frac{\left(\frac{\mathrm{2}{t}−\mathrm{4}}{\mathrm{3}−{t}}\right)}{\:\frac{\sqrt{\mathrm{4}{t}−\mathrm{8}}}{\mathrm{3}−{t}}}=\sqrt{{t}−\mathrm{2}} \\ $$$$\Rightarrow\:\left({t}−\mathrm{2}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\right)\left({t}−\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\right)=\sqrt{{t}−\mathrm{2}} \\ $$$$\:\:{let}\:\:\:\:\:\:\:{t}−\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}={p} \\ $$$$\:\:\:\:\:\:\:\:\:\:\Rightarrow\:{t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}=\frac{\mathrm{1}}{{p}} \\ $$$$\&\:\:\:\mathrm{2}{t}={p}+\frac{\mathrm{1}}{{p}} \\ $$$$\Rightarrow\:\:\:\mathrm{2}\left(\frac{\mathrm{1}}{{p}}−\mathrm{2}\right)^{\mathrm{2}} {p}^{\mathrm{2}} ={p}+\frac{\mathrm{1}}{{p}}−\mathrm{4} \\ $$$$\Rightarrow\:\:\mathrm{2}+\mathrm{8}{p}^{\mathrm{2}} −\mathrm{8}{p}={p}+\frac{\mathrm{1}}{{p}}−\mathrm{4} \\ $$$$\Rightarrow\:\:\:\:\mathrm{8}{p}^{\mathrm{3}} −\mathrm{9}{p}^{\mathrm{2}} +\mathrm{6}{p}−\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:{p}\approx\mathrm{0}.\mathrm{22961} \\ $$$$\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{{t}}=\frac{\mathrm{2}{p}}{\left({p}^{\mathrm{2}} +\mathrm{1}\right)}\approx\mathrm{0}.\mathrm{4362}\:. \\ $$

Commented by mr W last updated on 21/Jan/22

great! one can even get exact value of  p!

$${great}!\:{one}\:{can}\:{even}\:{get}\:{exact}\:{value}\:{of} \\ $$$${p}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com