Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 164533 by alephzero last updated on 18/Jan/22

Prove, that  1) Σ_(k=1) ^α (1/(k(k+1))) = (α/(α+1))  2) lim_(x→∞) Σ_(k=1) ^∞ (1/(k(k+x))) = 0

$$\mathrm{Prove},\:\mathrm{that} \\ $$$$\left.\mathrm{1}\right)\:\underset{{k}=\mathrm{1}} {\overset{\alpha} {\sum}}\frac{\mathrm{1}}{{k}\left({k}+\mathrm{1}\right)}\:=\:\frac{\alpha}{\alpha+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}\left({k}+{x}\right)}\:=\:\mathrm{0} \\ $$

Answered by amin96 last updated on 18/Jan/22

1)Σ_(k=1) ^α (1/k)−(1/(k+1))=1+(1/2)+(1/3)+..+(1/𝛂)−((1/2)+(1/3)+…+(1/(𝛂+1)))=  =1−(1/(𝛂+1))=(𝛂/(𝛂+1))  2) lim_(x→∞) ((1/x)Σ_(k=1) ^∞ (1/k)−(1/((k+x))))=lim_(x→∞) (1/x)Σ_(k=1) ^∞ (1/k)−lim_(x→∞) (1/x)Σ_(k=1) ^∞ ((1/x)/((k/x)+1))=  =0−0=0

$$\left.\mathrm{1}\right)\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\alpha} {\sum}}\frac{\mathrm{1}}{\boldsymbol{\mathrm{k}}}−\frac{\mathrm{1}}{\boldsymbol{\mathrm{k}}+\mathrm{1}}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+..+\frac{\mathrm{1}}{\boldsymbol{\alpha}}−\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\ldots+\frac{\mathrm{1}}{\boldsymbol{\alpha}+\mathrm{1}}\right)= \\ $$$$=\mathrm{1}−\frac{\mathrm{1}}{\boldsymbol{\alpha}+\mathrm{1}}=\frac{\boldsymbol{\alpha}}{\boldsymbol{\alpha}+\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{\mathrm{k}}}−\frac{\mathrm{1}}{\left(\boldsymbol{\mathrm{k}}+\boldsymbol{\mathrm{x}}\right)}\right)=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{\mathrm{k}}}−\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}}{\frac{\boldsymbol{\mathrm{k}}}{\boldsymbol{\mathrm{x}}}+\mathrm{1}}= \\ $$$$=\mathrm{0}−\mathrm{0}=\mathrm{0} \\ $$

Commented by alephzero last updated on 18/Jan/22

Thank You, sir

$$\mathrm{Thank}\:\mathrm{You},\:\mathrm{sir} \\ $$

Answered by Rasheed.Sindhi last updated on 18/Jan/22

(1/(k(k+1)))=(A/k)+(B/(k+1))  A(k+1)+Bk=1   { ((k=0: A=1)),((k=−1: B=−1)) :}  (1/(k(k+1)))=(1/k)−(1/(k+1))  Σ_(k=1) ^α (1/(k(k+1)))=Σ_(k=1) ^α ((1/k)−(1/(k+1)))     Σ_(k=1) ^α (1/k)−Σ_(k=1) ^α (1/(k+1))  =(1/1)−(1/2)  +(1/2)−(1/3)  +(1/3)−(1/4)  ....  +(1/(α−1))+(1/α)  +(1/α)−(1/(α+1))  =(1/1)−(1/(α+1))=((α+1−1)/(α+1))=(α/(α+1))

$$\frac{\mathrm{1}}{{k}\left({k}+\mathrm{1}\right)}=\frac{{A}}{{k}}+\frac{{B}}{{k}+\mathrm{1}} \\ $$$${A}\left({k}+\mathrm{1}\right)+{Bk}=\mathrm{1} \\ $$$$\begin{cases}{{k}=\mathrm{0}:\:{A}=\mathrm{1}}\\{{k}=−\mathrm{1}:\:{B}=−\mathrm{1}}\end{cases} \\ $$$$\frac{\mathrm{1}}{{k}\left({k}+\mathrm{1}\right)}=\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{{k}+\mathrm{1}} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\alpha} {\sum}}\frac{\mathrm{1}}{{k}\left({k}+\mathrm{1}\right)}=\underset{{k}=\mathrm{1}} {\overset{\alpha} {\sum}}\left(\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{{k}+\mathrm{1}}\right) \\ $$$$\:\:\:\underset{{k}=\mathrm{1}} {\overset{\alpha} {\sum}}\frac{\mathrm{1}}{{k}}−\underset{{k}=\mathrm{1}} {\overset{\alpha} {\sum}}\frac{\mathrm{1}}{{k}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}}−\cancel{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$+\cancel{\frac{\mathrm{1}}{\mathrm{2}}}−\cancel{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$+\cancel{\frac{\mathrm{1}}{\mathrm{3}}}−\cancel{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$.... \\ $$$$+\cancel{\frac{\mathrm{1}}{\alpha−\mathrm{1}}}+\cancel{\frac{\mathrm{1}}{\alpha}} \\ $$$$+\cancel{\frac{\mathrm{1}}{\alpha}}−\frac{\mathrm{1}}{\alpha+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}}−\frac{\mathrm{1}}{\alpha+\mathrm{1}}=\frac{\alpha+\mathrm{1}−\mathrm{1}}{\alpha+\mathrm{1}}=\frac{\alpha}{\alpha+\mathrm{1}} \\ $$

Commented by alephzero last updated on 18/Jan/22

Thank You sir.

$$\mathrm{Thank}\:\mathrm{You}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com