Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 164547 by mnjuly1970 last updated on 21/Jan/22

          prove       Ω= ∫_0 ^( ∞) (( (√x))/(( 1+x +x^( 2) )^( 3)  )) dx =^?  ((π(√3))/(36))         −−m.n−−

proveΩ=0x(1+x+x2)3dx=?π336m.n

Answered by MJS_new last updated on 19/Jan/22

∫((√x)/((x^2 +x+2)^3 ))dx=       [t=(√x) → dx=2(√x)dt]  =2∫(t^2 /((t^4 +t^2 +1)^3 ))dt=       [Ostrogradski′s Method]  =((t(7t^6 +10t^4 +14t^2 +5))/(12(t^4 +t^2 +1)^2 ))+(1/(12))∫((7t^2 −5)/(t^4 +t^2 +1))dt=         (1/(12))∫((7t^2 −5)/(t^4 +t^2 +1))dt=       =(1/4)∫((2t−1)/(t^2 −t+1))dt+(1/(24))∫(dt/(t^2 −t+1))−(1/4)∫((2t+1)/(t^2 +t+1))dt+(1/(24))∫(dt/(t^2 +t+1))=       ...       =(1/4)ln ((t^2 −t+1)/(t^2 +t+1)) +((√3)/(36))(arctan (((√3)(2t−1))/3) +arctan (((√3)(2t+1))/3))    =((t(7t^6 +10t^4 +14t^2 +5))/(12(t^4 +t^2 +1)^2 ))+(1/4)ln ((t^2 −t+1)/(t^2 +t+1)) +((√3)/(36))(arctan (((√3)(2t−1))/3) +arctan (((√3)(2t+1))/3))=  =(((√x)(7x^3 +10x^2 +14x+5))/(12(x^2 +x+1)^2 ))+(1/4)ln ((x−(√x)+1)/(x+(√x)+1)) +((√3)/(36))(arctan (((√3)(2(√x)−1))/3) +arctan (((√3)(2(√x)+1))/3))+C    ⇒ ∫_0 ^∞ ((√x)/((x^2 +x+2)^3 ))dx=(((√3)π)/(36))

x(x2+x+2)3dx=[t=xdx=2xdt]=2t2(t4+t2+1)3dt=[OstrogradskisMethod]=t(7t6+10t4+14t2+5)12(t4+t2+1)2+1127t25t4+t2+1dt=1127t25t4+t2+1dt==142t1t2t+1dt+124dtt2t+1142t+1t2+t+1dt+124dtt2+t+1=...=14lnt2t+1t2+t+1+336(arctan3(2t1)3+arctan3(2t+1)3)=t(7t6+10t4+14t2+5)12(t4+t2+1)2+14lnt2t+1t2+t+1+336(arctan3(2t1)3+arctan3(2t+1)3)==x(7x3+10x2+14x+5)12(x2+x+1)2+14lnxx+1x+x+1+336(arctan3(2x1)3+arctan3(2x+1)3)+C0x(x2+x+2)3dx=3π36

Terms of Service

Privacy Policy

Contact: info@tinkutara.com