All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 164547 by mnjuly1970 last updated on 21/Jan/22
proveΩ=∫0∞x(1+x+x2)3dx=?π336−−m.n−−
Answered by MJS_new last updated on 19/Jan/22
∫x(x2+x+2)3dx=[t=x→dx=2xdt]=2∫t2(t4+t2+1)3dt=[Ostrogradski′sMethod]=t(7t6+10t4+14t2+5)12(t4+t2+1)2+112∫7t2−5t4+t2+1dt=112∫7t2−5t4+t2+1dt==14∫2t−1t2−t+1dt+124∫dtt2−t+1−14∫2t+1t2+t+1dt+124∫dtt2+t+1=...=14lnt2−t+1t2+t+1+336(arctan3(2t−1)3+arctan3(2t+1)3)=t(7t6+10t4+14t2+5)12(t4+t2+1)2+14lnt2−t+1t2+t+1+336(arctan3(2t−1)3+arctan3(2t+1)3)==x(7x3+10x2+14x+5)12(x2+x+1)2+14lnx−x+1x+x+1+336(arctan3(2x−1)3+arctan3(2x+1)3)+C⇒∫∞0x(x2+x+2)3dx=3π36
Terms of Service
Privacy Policy
Contact: info@tinkutara.com