Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 164549 by wwww last updated on 18/Jan/22

Answered by alephzero last updated on 18/Jan/22

(a) a−(1/a)=4  ((a^2 −1)/a) = 4  ((a^2 −1−4a)/a) = 0  ⇒ a^2 −4a−1 = 0  a = ((4 ± (√(16+4)))/2) = ((4 ± (√(20)))/2) = ((4 ± 2(√5))/2) =  = 2 ± (√5)  Let a+(1/a) =A  ⇒ A_1  = 2+(√5)+(1/(2+(√5)))=2+(√5)−2+(√5) =  = 2(√5)  A_2  = 2−(√5)+(1/(2−(√5))) =2−(√5)−2−(√5) =  = −2(√5)  ⇒ a+(1/a) = ±2(√5)  (b) a^3 +(1/a^3 ) = B  a_1 ^3  = 38+17(√5) ∧ a_2 ^3  = 38−17(√5)  ⇒ B_1  = 38+17(√5)+(1/(38+17(√5))) = 34(√5)  B_2  = 38−17(√5)+(1/(38−17(√5))) = −34(√5)

(a)a1a=4a21a=4a214aa=0a24a1=0a=4±16+42=4±202=4±252==2±5Leta+1a=AA1=2+5+12+5=2+52+5==25A2=25+125=2525==25a+1a=±25(b)a3+1a3=Ba13=38+175a23=38175B1=38+175+138+175=345B2=38175+138175=345

Answered by Rasheed.Sindhi last updated on 18/Jan/22

a−(1/a)=4  (a):  (a−(1/a)=4)^2   a^2 +(1/a^2 )−2=16  (a+(1/a))^2 =20  a+(1/a)=±2(√5)  (b):(a+(1/a))^3 =(±2(√5))^3   a^3 +(1/a^3 )+3(a+(1/a))=±40(√5)  a^3 +(1/a^3 )+3(±2(√5))=±40(√5)  a^3 +(1/a^3 )=±40(√5) ∓6(√5) =±34(√5)  (c):( a−(1/a)=4)^3           a^3 −(1/a^3 )−3(a−(1/a))=64          a^3 −(1/a^3 )−3(4)=64        a^3 −(1/a^3 )=76      (a^3 −(1/a^3 ))(a^3 +(1/a^3 ))=(76)(±34(√5))      a^6 −(1/a^6 )=±2584(√5)

a1a=4(a):(a1a=4)2a2+1a22=16(a+1a)2=20a+1a=±25(b):(a+1a)3=(±25)3a3+1a3+3(a+1a)=±405a3+1a3+3(±25)=±405a3+1a3=±40565=±345(c):(a1a=4)3a31a33(a1a)=64a31a33(4)=64a31a3=76(a31a3)(a3+1a3)=(76)(±345)a61a6=±25845

Terms of Service

Privacy Policy

Contact: info@tinkutara.com