Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 164560 by PRITHWISH SEN 2 last updated on 18/Jan/22

6 boys and 6 girls go to an exhibition and the cost  of ticket is Rs 10.Each girl has a 10 rupees note  while each boy has a 20 rupees note. They stand   in a queue at the counter and the cashier does  not have any money at the begining , then the   number of ways of arranging the boys and girls  so that no one waits for a change is  A) 132     B)    264 C)  132(720)^2     D)264(720)^2

6boysand6girlsgotoanexhibitionandthecostofticketisRs10.Eachgirlhasa10rupeesnotewhileeachboyhasa20rupeesnote.Theystandinaqueueatthecounterandthecashierdoesnothaveanymoneyatthebegining,thenthenumberofwaysofarrangingtheboysandgirlssothatnoonewaitsforachangeisA)132B)264C)132(720)2D)264(720)2

Commented by mr W last updated on 12/Mar/23

general solution see Q189049

generalsolutionseeQ189049

Answered by nikif99 last updated on 19/Jan/22

C) 132(720)^2 =68 428 800

C)132(720)2=68428800

Commented by PRITHWISH SEN 2 last updated on 20/Jan/22

Thank you sir. But workings ?

Thankyousir.Butworkings?

Commented by nikif99 last updated on 20/Jan/22

Let′s ignore boys. 6 girls can stand in  a queue in 6! ways. Now we ignore girls.  6 boys can stand in a queue in 6! ways.  Merging these queues in any way  produces (6!)^2 =518400 ways for  reaching the cashier. Now the problem  is “in how many ways can we merge  these two lists with the restriction  ′number of girls passed >= number  of boys passed′”.  I still look for this answer. All queues  must start with girl and end with boy.  Using graphic design I estimate this  to 132. I suppose number of accepted  mergins (132) is combinations of 12  over 6 (C_6 ^(12) ) minus 792 which represent  queues not fullfilling the restriction  (need to explore how to compute it).  If someone else could advance to a  solution I would be happy to read.

Letsignoreboys.6girlscanstandinaqueuein6!ways.Nowweignoregirls.6boyscanstandinaqueuein6!ways.Mergingthesequeuesinanywayproduces(6!)2=518400waysforreachingthecashier.Nowtheproblemisinhowmanywayscanwemergethesetwolistswiththerestrictionnumberofgirlspassed>=numberofboyspassed.Istilllookforthisanswer.Allqueuesmuststartwithgirlandendwithboy.UsinggraphicdesignIestimatethisto132.Isupposenumberofacceptedmergins(132)iscombinationsof12over6(C612)minus792whichrepresentqueuesnotfullfillingtherestriction(needtoexplorehowtocomputeit).IfsomeoneelsecouldadvancetoasolutionIwouldbehappytoread.

Answered by mr W last updated on 24/Jan/22

◂ GB_1 GB_2 GB_3 GB_4 GB_5 GB_6   G=positions of the girls  B_i =possible positions of boys  a=number of boys at position B_1   b=number of boys at position B_2   ...  f=number of boys at position B_6   a+b+c+d+e+f=6  0≤a≤1  0≤b≤2−a  0≤c≤3−a−b  0≤d≤4−a−b−c  0≤e≤5−a−b−c−d  0≤f≤6−a−b−c−d−e  number of ways to place the 6 boys  into the proper positions is  n=Σ_(a=0) ^1  Σ_(b=0) ^(2−a)  Σ_(c=0) ^(3−a−b)  Σ_(d=0) ^(4−a−b−c)  Σ_(e=0) ^(5−a−b−c−d)  Σ_(f=0) ^(6−a−b−c−d−e) if (a+b+c+d+e+f=6)  we get n=132.  in each of these arrangements we  have 6!=720 ways to arrange the boys  and 6!=720 ways to arrange the girls.  so the total number of ways to  queue the boys and girls properly is   132×(720)^2 .

GB1GB2GB3GB4GB5GB6G=positionsofthegirlsBi=possiblepositionsofboysa=numberofboysatpositionB1b=numberofboysatpositionB2...f=numberofboysatpositionB6a+b+c+d+e+f=60a10b2a0c3ab0d4abc0e5abcd0f6abcdenumberofwaystoplacethe6boysintotheproperpositionsisn=1a=02ab=03abc=04abcd=05abcde=06abcdef=0if(a+b+c+d+e+f=6)wegetn=132.ineachofthesearrangementswehave6!=720waystoarrangetheboysand6!=720waystoarrangethegirls.sothetotalnumberofwaystoqueuetheboysandgirlsproperlyis132×(720)2.

Commented by mr W last updated on 25/Jan/22

how to calculate  n=Σ_(a=0) ^1  Σ_(b=0) ^(2−a)  Σ_(c=0) ^(3−a−b)  Σ_(d=0) ^(4−a−b−c)  Σ_(e=0) ^(5−a−b−c−d)  Σ_(f=0) ^(6−a−b−c−d−e) if (a+b+c+d+e+f=6)  we can get the value of n in following  way, e.g. using wolfram alpha:  n_1 =Σ_(a=0) ^1  Σ_(b=0) ^(2−a)  Σ_(c=0) ^(3−a−b)  Σ_(d=0) ^(4−a−b−c)  Σ_(e=0) ^(5−a−b−c−d)  Σ_(f=0) ^(6−a−b−c−d−e) (1)  n_2 =Σ_(a=0) ^1  Σ_(b=0) ^(2−a)  Σ_(c=0) ^(3−a−b)  Σ_(d=0) ^(4−a−b−c)  Σ_(e=0) ^(5−a−b−c−d)  Σ_(f=0) ^(6−a−b−c−d−e) ∣sign (a+b+c+d+e+f−6)∣  n_1 =429  n_2 =297  n=n_1 −n_2 =429−297=132

howtocalculaten=1a=02ab=03abc=04abcd=05abcde=06abcdef=0if(a+b+c+d+e+f=6)wecangetthevalueofninfollowingway,e.g.usingwolframalpha:n1=1a=02ab=03abc=04abcd=05abcde=06abcdef=0(1)n2=1a=02ab=03abc=04abcd=05abcde=06abcdef=0sign(a+b+c+d+e+f6)n1=429n2=297n=n1n2=429297=132

Commented by mr W last updated on 25/Jan/22

Commented by mr W last updated on 25/Jan/22

Commented by nikif99 last updated on 30/Jan/22

A wonderfull solution to a complicated  problem. Thank you Sir W for your  contribution.

Awonderfullsolutiontoacomplicatedproblem.ThankyouSirWforyourcontribution.

Commented by Ar Brandon last updated on 30/Jan/22

Q161675 , Sir ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com