Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 164585 by mnjuly1970 last updated on 19/Jan/22

           I = ∫_0 ^( 1) (( Li_( 2)  ( x ))/(1 + x)) dx = ?      −−−−−−

I=01Li2(x)1+xdx=?

Answered by mindispower last updated on 19/Jan/22

∫_0 ^1 ((Li_2 (x))/(1+x))dx=ln(2)(π^2 /6)+∫_0 ^1 ((ln(1−x)ln(1+x))/x)dx_(=A)   A=(1/4)∫_0 ^1 ((ln^2 (1−x^2 ))/x)−((ln^2 (((1−x)/(1+x))))/x)dx  =(1/8)∫_0 ^1 ((ln^2 (1−y))/y)dy−(1/2)∫_0 ^1 ((ln^2 (y))/(1−y^2 ))dy  =(1/8)∫_0 ^∞ ((t^2 e^(−t) )/(1−e^(−t) )) −(1/2)∫_0 ^∞ ((t^2 e^(−t) )/(1−e^(−2t) ))dt  =(1/8)Γ(3)ζ(3)−(1/2)Σ_(n≥0) ∫_0 ^∞ t^2 e^(−(1+2n)t) dt  =((𝛇(3))/4)−Σ_(n≥0) ((Γ(3))/(2(2n+1)^3 ))  =((ζ(3))/4)−(7/8)ζ(3)=−(5/8)ζ(3)  ∫_0 ^1 ((Li_2 (x))/(1+x))dx=((ln(2))/6)π^2 −(5/8)ζ(3)

01Li2(x)1+xdx=ln(2)π26+01ln(1x)ln(1+x)xdx=AA=1401ln2(1x2)xln2(1x1+x)xdx=1801ln2(1y)ydy1201ln2(y)1y2dy=180t2et1et120t2et1e2tdt=18Γ(3)ζ(3)12n00t2e(1+2n)tdt=ζ(3)4n0Γ(3)2(2n+1)3=ζ(3)478ζ(3)=58ζ(3)01Li2(x)1+xdx=ln(2)6π258ζ(3)

Commented by mnjuly1970 last updated on 19/Jan/22

    thank hou so much sir power  . very nice solution..

thankhousomuchsirpower.verynicesolution..

Commented by mindispower last updated on 19/Jan/22

Withe Pleasur Have a nice Day sir

WithePleasurHaveaniceDaysir

Answered by Lordose last updated on 19/Jan/22

  I = ∫_0 ^( 1) ((Li_2 (x))/(1+x))dx  I =^(IBP) Li_2 (x)ln(1+x)∣_0 ^1  + ∫_0 ^( 1) ((ln(1−x)ln(1+x))/x)dx  I = ln(2)𝛇(2) + ∫_0 ^( 1) ((ln(1−x)ln(1+x))/x)dx   J = −(1/2)(∫_0 ^( 1) ln^2 (((1−x)/(1+x)))(dx/x) − ∫_0 ^( 1) ((ln^2 (1−x))/x)dx −∫_0 ^( 1) ((ln^2 (1+x))/x)dx)  J =−(1/2)(A − B − C)  A =^(x=((1−x)/(1+x))) 2∫_0 ^( 1) ((ln^2 (x))/(1−x^2 ))dx = 2Σ_(k=0) ^∞ ∫_0 ^( 1) x^(2k) ln^2 (x)dx  A =^(IBP×2)  4Σ_(k=0) ^∞ (1/((2k+1)^3 )) = 4(((7𝛇(3))/8)) = ((7𝛇(3))/2)  A = ((7𝛇(3))/2)  B =^(x=1−x) ∫_0 ^( 1) ((ln^2 (x))/(1−x))dx = Σ_(k=1) ^∞ ∫_0 ^( 1) x^(k−1) ln^2 (x)dx  B =^(IBP×2)  2Σ_(k=1) ^∞ (1/k^3 ) = 2𝛇(3)  B = 2𝛇(3)  C = (1/4)𝛇(3)  J = −(1/2)(((7𝛇(3))/2) − 2𝛇(3) − ((𝛇(3))/4)) = −((5𝛇(3))/8)  I = ln(2)𝛇(2) + ((5𝛇(3))/8)  I = 𝛇(2)ln(2) + ((5𝛇(3))/8)

I=01Li2(x)1+xdxI=IBPLi2(x)ln(1+x)01+01ln(1x)ln(1+x)xdxI=ln(2)ζ(2)+01ln(1x)ln(1+x)xdxJ=12(01ln2(1x1+x)dxx01ln2(1x)xdx01ln2(1+x)xdx)J=12(ABC)A=x=1x1+x201ln2(x)1x2dx=2k=001x2kln2(x)dxA=IBP×24k=01(2k+1)3=4(7ζ(3)8)=7ζ(3)2A=7ζ(3)2B=x=1x01ln2(x)1xdx=k=101xk1ln2(x)dxB=IBP×22k=11k3=2ζ(3)B=2ζ(3)C=14ζ(3)J=12(7ζ(3)22ζ(3)ζ(3)4)=5ζ(3)8I=ln(2)ζ(2)+5ζ(3)8I=ζ(2)ln(2)+5ζ(3)8

Commented by mnjuly1970 last updated on 19/Jan/22

  thx a lot sir lordos

thxalotsirlordos

Terms of Service

Privacy Policy

Contact: info@tinkutara.com