Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 164612 by bounhome last updated on 19/Jan/22

solve:   1. ∫(1/(sinx))dx   2.∫(1/(cosx))dx

solve:1.1sinxdx2.1cosxdx

Answered by Ar Brandon last updated on 19/Jan/22

∫(1/(sinx))dx, x=2t⇒dx=2dt  =∫((2dt)/(sin2t))=∫(1/(sintcost))dt=∫((cos^2 t+sin^2 t)/(sintcost))dt  =∫(((cost)/(sint))+((sint)/(cost)))dt=ln(sint)−ln(cost)+C  =ln∣tan((x/2))∣+C

1sinxdx,x=2tdx=2dt=2dtsin2t=1sintcostdt=cos2t+sin2tsintcostdt=(costsint+sintcost)dt=ln(sint)ln(cost)+C=lntan(x2)+C

Answered by Ar Brandon last updated on 19/Jan/22

∫(1/(cosx))dx= Q163829

1cosxdx=Q163829

Answered by Eulerian last updated on 20/Jan/22

    Solution:   1. ∫ ((sin x)/(sin^2 x)) dx = ∫ ((sin x)/(1−cos^2 x)) = −tanh^(−1) (cos x) + C      2. ∫ ((cos x)/(cos^2 x)) dx = ∫ ((cos x)/(1−sin^2 x)) dx = tanh^(−1) (sin x) + C

Solution:1.sinxsin2xdx=sinx1cos2x=tanh1(cosx)+C2.cosxcos2xdx=cosx1sin2xdx=tanh1(sinx)+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com