All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 164612 by bounhome last updated on 19/Jan/22
solve:1.∫1sinxdx2.∫1cosxdx
Answered by Ar Brandon last updated on 19/Jan/22
∫1sinxdx,x=2t⇒dx=2dt=∫2dtsin2t=∫1sintcostdt=∫cos2t+sin2tsintcostdt=∫(costsint+sintcost)dt=ln(sint)−ln(cost)+C=ln∣tan(x2)∣+C
∫1cosxdx=Q163829
Answered by Eulerian last updated on 20/Jan/22
Solution:1.∫sinxsin2xdx=∫sinx1−cos2x=−tanh−1(cosx)+C2.∫cosxcos2xdx=∫cosx1−sin2xdx=tanh−1(sinx)+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com