All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 164653 by mnjuly1970 last updated on 20/Jan/22
solveΟ=β«01ln2(x).tanhβ1(x)xdx=?Ξ©=β«01(tanhβ1(x))21+x=?ββββ
Answered by Lordose last updated on 20/Jan/22
Ξ©=β«01(tanhβ1(x))21+xdxΞ©=14β«01ln2(1βx1+x)1+xdxΞ©=x=1βx1+x14β«01ln2(x)1+x=14ββn=1(β1)nβ1β«01xnβ1ln2(x)dxΞ©=IBPΓ212ββn=1(β1)nβ1n3=Ξ·(3)=38ΞΆ(3)Ξ©=38ΞΆ(3)
Answered by Ar Brandon last updated on 20/Jan/22
Ο=β«01ln2xtanhβ1(x)xdx=[ln3x3tanhβ1(x)]01β13β«01ln3x1βx2dx=β13β 12β 18β«01uβ12ln3u1βudu=148Ο(3)(12)=2(ΞΆ(4)β116ΞΆ(4))=158ΞΆ(4)=15720Ο4
Commented by mnjuly1970 last updated on 20/Jan/22
verhnice...thankyousirbrandon...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com