Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 164653 by mnjuly1970 last updated on 20/Jan/22

          solve    𝛗 = ∫_0 ^( 1)  ((ln^( 2) ( x ). tanh^( βˆ’1) ( x  ))/x)dx =?     Ξ©= ∫_0 ^( 1) (( (tanh^(βˆ’1) (x))^( 2) )/(1+x)) = ?        βˆ’βˆ’βˆ’βˆ’

$$ \\ $$$$\:\:\:\:\:\:\:\:{solve} \\ $$$$\:\:\boldsymbol{\phi}\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}^{\:\mathrm{2}} \left(\:{x}\:\right).\:{tanh}^{\:βˆ’\mathrm{1}} \left(\:{x}\:\:\right)}{{x}}{dx}\:=? \\ $$$$\:\:\:\Omega=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\left({tanh}^{βˆ’\mathrm{1}} \left({x}\right)\right)^{\:\mathrm{2}} }{\mathrm{1}+{x}}\:=\:? \\ $$$$\:\:\:\:\:\:βˆ’βˆ’βˆ’βˆ’ \\ $$

Answered by Lordose last updated on 20/Jan/22

  Ξ© = ∫_0 ^( 1) (((tanh^(βˆ’1) (x))^2 )/(1+x))dx  Ξ© = (1/4)∫_0 ^( 1) ((ln^2 (((1βˆ’x)/(1+x))))/(1+x))dx  Ξ© =^(x=((1βˆ’x)/(1+x))) (1/4)∫_0 ^( 1) ((ln^2 (x))/(1+x)) = (1/4)Ξ£_(n=1) ^∞ (βˆ’1)^(nβˆ’1) ∫_0 ^( 1) x^(nβˆ’1) ln^2 (x)dx  Ξ© =^(IBPΓ—2) (1/2)Ξ£_(n=1) ^∞ (((βˆ’1)^(nβˆ’1) )/n^3 ) = π›ˆ(3) = (3/8)𝛇(3)  𝛀 = (3/8)𝛇(3)

$$ \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left(\mathrm{tanh}^{βˆ’\mathrm{1}} \left(\mathrm{x}\right)\right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}}\mathrm{dx} \\ $$$$\Omega\:=\:\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\frac{\mathrm{1}βˆ’\mathrm{x}}{\mathrm{1}+\mathrm{x}}\right)}{\mathrm{1}+\mathrm{x}}\mathrm{dx} \\ $$$$\Omega\:\overset{\mathrm{x}=\frac{\mathrm{1}βˆ’\mathrm{x}}{\mathrm{1}+\mathrm{x}}} {=}\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(βˆ’\mathrm{1}\right)^{\mathrm{n}βˆ’\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{x}^{\mathrm{n}βˆ’\mathrm{1}} \mathrm{ln}^{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\Omega\:\overset{\boldsymbol{\mathrm{IBP}}Γ—\mathrm{2}} {=}\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(βˆ’\mathrm{1}\right)^{\mathrm{n}βˆ’\mathrm{1}} }{\mathrm{n}^{\mathrm{3}} }\:=\:\boldsymbol{\eta}\left(\mathrm{3}\right)\:=\:\frac{\mathrm{3}}{\mathrm{8}}\boldsymbol{\zeta}\left(\mathrm{3}\right) \\ $$$$\boldsymbol{\Omega}\:=\:\frac{\mathrm{3}}{\mathrm{8}}\boldsymbol{\zeta}\left(\mathrm{3}\right)\: \\ $$

Answered by Ar Brandon last updated on 20/Jan/22

  Ο†=∫_0 ^1 ((ln^2 xtanh^(βˆ’1) (x))/x)dx     =[((ln^3 x)/3)tanh^(βˆ’1) (x)]_0 ^1 βˆ’(1/3)∫_0 ^1 ((ln^3 x)/(1βˆ’x^2 ))dx     =βˆ’(1/3)βˆ™(1/2)βˆ™(1/8)∫_0 ^1 ((u^(βˆ’(1/2)) ln^3 u)/(1βˆ’u))du=(1/(48))ψ^((3)) ((1/2))     =2(ΞΆ(4)βˆ’(1/(16))ΞΆ(4))=((15)/8)ΞΆ(4)=((15)/(720))Ο€^4

$$ \\ $$$$\phi=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} {x}\mathrm{tanh}^{βˆ’\mathrm{1}} \left({x}\right)}{{x}}{dx} \\ $$$$\:\:\:=\left[\frac{\mathrm{ln}^{\mathrm{3}} {x}}{\mathrm{3}}\mathrm{tanh}^{βˆ’\mathrm{1}} \left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} βˆ’\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{3}} {x}}{\mathrm{1}βˆ’{x}^{\mathrm{2}} }{dx} \\ $$$$\:\:\:=βˆ’\frac{\mathrm{1}}{\mathrm{3}}\centerdot\frac{\mathrm{1}}{\mathrm{2}}\centerdot\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{βˆ’\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{ln}^{\mathrm{3}} {u}}{\mathrm{1}βˆ’{u}}{du}=\frac{\mathrm{1}}{\mathrm{48}}\psi^{\left(\mathrm{3}\right)} \left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\:\:\:=\mathrm{2}\left(\zeta\left(\mathrm{4}\right)βˆ’\frac{\mathrm{1}}{\mathrm{16}}\zeta\left(\mathrm{4}\right)\right)=\frac{\mathrm{15}}{\mathrm{8}}\zeta\left(\mathrm{4}\right)=\frac{\mathrm{15}}{\mathrm{720}}\pi^{\mathrm{4}} \\ $$

Commented by mnjuly1970 last updated on 20/Jan/22

  verh nice ...thank you  sir brandon...

$$\:\:{verh}\:{nice}\:...{thank}\:{you} \\ $$$${sir}\:{brandon}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com