Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 164705 by Kayela last updated on 20/Jan/22

lim_(x→0) (((1^x +2^x +...+n^x )/n))^(1/x)

limx0(1x+2x+...+nxn)1x

Answered by Berlindo last updated on 20/Jan/22

=[lim_(x→0) (1+((1^x +2^x +...+n^x −n)/n))^(n/(1^x +2^x +...+n^x −n)) ]^(lim_(x→0) ((1^x +2^x +...+n^x −n)/x)∙(1/n))   =e^(lim_(x→0) (((1^x −1)+(2^x −1)+...+(n^x −1))/x)∙(1/n))   =e^([lim_(x→0) ((1^x −1)/x)+lim_(x→0) ((2^x −1)/x)+...+lim_(x→0) ((n^x −1)/x)]∙(1/n))   =e^((ln 1+ln 2+...+ln n)∙(1/n)) =e^((1/n)ln (n!)) =e^(ln (((n!))^(1/n) ))   =((n!))^(1/n)   ∴lim_(x→0) (((1^x +2^x +...+n^x )/n))^(1/x) =((n!))^(1/n)                                  ★Berlindo Ndala★

=[limx0(1+1x+2x+...+nxnn)n1x+2x+...+nxn]limx01x+2x+...+nxnx1n=elimx0(1x1)+(2x1)+...+(nx1)x1n=e[limx01x1x+limx02x1x+...+limx0nx1x]1n=e(ln1+ln2+...+lnn)1n=e1nln(n!)=eln(n!n)=n!nlimx0(1x+2x+...+nxn)1x=n!nBerlindoNdala

Answered by puissant last updated on 21/Jan/22

=lim_(x→0) (((e^(xln1) +e^(xln2) +...+e^(xlnn) )/n))^(1/x)   =lim_(x→0) ((((1+xln1)+(1+xln2)+...+(1+xlnn))/n))^(1/x)   =lim_(x→0)  (1+((xln(n!))/n))^(1/x)   = lim_(x→0)  e^((1/x)ln(1+((xln(n!))/n)))  = lim_(x→0)  e^((1/x)(((xln(n!))/n)))   = e^(((ln(n!))/n) ) = ((n!))^(1/n) ..                ............Le puissant...........

=limx0(exln1+exln2+...+exlnnn)1x=limx0((1+xln1)+(1+xln2)+...+(1+xlnn)n)1x=limx0(1+xln(n!)n)1x=limx0e1xln(1+xln(n!)n)=limx0e1x(xln(n!)n)=eln(n!)n=n!n..............Lepuissant...........

Terms of Service

Privacy Policy

Contact: info@tinkutara.com