All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 164705 by Kayela last updated on 20/Jan/22
limx→0(1x+2x+...+nxn)1x
Answered by Berlindo last updated on 20/Jan/22
=[limx→0(1+1x+2x+...+nx−nn)n1x+2x+...+nx−n]limx→01x+2x+...+nx−nx⋅1n=elimx→0(1x−1)+(2x−1)+...+(nx−1)x⋅1n=e[limx→01x−1x+limx→02x−1x+...+limx→0nx−1x]⋅1n=e(ln1+ln2+...+lnn)⋅1n=e1nln(n!)=eln(n!n)=n!n∴limx→0(1x+2x+...+nxn)1x=n!n★BerlindoNdala★
Answered by puissant last updated on 21/Jan/22
=limx→0(exln1+exln2+...+exlnnn)1x=limx→0((1+xln1)+(1+xln2)+...+(1+xlnn)n)1x=limx→0(1+xln(n!)n)1x=limx→0e1xln(1+xln(n!)n)=limx→0e1x(xln(n!)n)=eln(n!)n=n!n..............Lepuissant...........
Terms of Service
Privacy Policy
Contact: info@tinkutara.com