Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 164728 by mr W last updated on 21/Jan/22

Commented by mr W last updated on 21/Jan/22

two points P and Q on the parabola  y=(x^2 /a) with ∣PQ∣=l. the normal lines  at P and Q intersect at point S.  find the locus of S.

twopointsPandQontheparabolay=x2awithPQ∣=l.thenormallinesatPandQintersectatpointS.findthelocusofS.

Answered by ajfour last updated on 21/Jan/22

S(−h,k)  Normal  from S  y=−((a/(2p)))x+c       P(p,(p^2 /a))  lies on it  (p^2 /a)=−(a/2)+c  (p_2 −p_1 )^2 +(((p_2 ^2 −p_1 ^2 )^2 )/a^3 )=L^2     ...(I)  k=((ah)/(2p))+(p^2 /a)+(a/2)  ⇒ 2p^3 +a(a−2k)p+ah=0  we get p_1 ,p_2 , p_3   in terms of    h, k,a .  substituting in ..(I) gives required  the three locii, for three choices of  pairs from among p_1 , p_2 , p_3 .

S(h,k)NormalfromSy=(a2p)x+cP(p,p2a)liesonitp2a=a2+c(p2p1)2+(p22p12)2a3=L2...(I)k=ah2p+p2a+a22p3+a(a2k)p+ah=0wegetp1,p2,p3intermsofh,k,a.substitutingin..(I)givesrequiredthethreelocii,forthreechoicesofpairsfromamongp1,p2,p3.

Commented by mr W last updated on 21/Jan/22

thanks for trying sir! i′ll also give a  try.

thanksfortryingsir!illalsogiveatry.

Answered by mr W last updated on 21/Jan/22

Commented by mr W last updated on 23/Jan/22

locus in shape of a German Brezel...

locusinshapeofaGermanBrezel...

Commented by mr W last updated on 22/Jan/22

Commented by mr W last updated on 21/Jan/22

say P(p, (p^2 /a)), Q(q, (q^2 /a))  tan φ=((2p)/a)  tan ϕ=((2q)/a)  (q−p)^2 +((q^2 /a)−(p^2 /a))^2 =l^2   (q−p)^2 [1+(((p+q)^2 )/a^2 )]=l^2   [(q+p)^2 −4pq][1+(((p+q)^2 )/a^2 )]=l^2   let u=p+q, v=pq  (u^2 −4v)(1+(u^2 /a^2 ))=l^2   ⇒v=(1/4)(u^2 −((a^2 l^2 )/(a^2 +u^2 )))    eqn. of PS:  y=(p^2 /a)−(a/(2p))(x−p)  y=(p^2 /a)+(a/2)−((ax)/(2p))  eqn. of QS:  y=(q^2 /a)+(a/2)−((ax)/(2q))  say intersection point S(x_s ,y_s )  (p^2 /a)+(a/2)−((ax_s )/(2p))=(q^2 /a)+(a/2)−((ax_s )/(2q))  (p^2 /a)−((ax_s )/(2p))=(q^2 /a)−((ax_s )/(2q))  x_s =−((2(q+p)pq)/a^2 )  ⇒x_s =−((2uv)/a^2 )  2y_s =((p^2 +q^2 )/a)+a−ax_s ((1/(2p))+(1/(2q)))  y_s =(a/2)+((p^2 +q^2 )/(2a))−((a(p+q)x_s )/(4pq))  y_s =(a/2)+(((p+q)^2 −pq)/a)  ⇒y_s =(a/2)+((u^2 −v)/a)  taking u as parameter we get the eqn.  of locus of point S:   { ((x=−((2uv)/a^2 ))),((y=(a/2)+((u^2 −v)/a))) :} with v=(1/4)(u^2 −((a^2 l^2 )/(a^2 +u^2 )))    with u given, p, q are roots of  z^2 −uz+(1/4)(u^2 −((a^2 l^2 )/(a^2 +u^2 )))=0  ⇒p,q=(1/2)(u∓((al)/( (√(a^2 +u^2 )))))

sayP(p,p2a),Q(q,q2a)tanϕ=2patanφ=2qa(qp)2+(q2ap2a)2=l2(qp)2[1+(p+q)2a2]=l2[(q+p)24pq][1+(p+q)2a2]=l2letu=p+q,v=pq(u24v)(1+u2a2)=l2v=14(u2a2l2a2+u2)eqn.ofPS:y=p2aa2p(xp)y=p2a+a2ax2peqn.ofQS:y=q2a+a2ax2qsayintersectionpointS(xs,ys)p2a+a2axs2p=q2a+a2axs2qp2aaxs2p=q2aaxs2qxs=2(q+p)pqa2xs=2uva22ys=p2+q2a+aaxs(12p+12q)ys=a2+p2+q22aa(p+q)xs4pqys=a2+(p+q)2pqays=a2+u2vatakinguasparameterwegettheeqn.oflocusofpointS:{x=2uva2y=a2+u2vawithv=14(u2a2l2a2+u2)withugiven,p,qarerootsofz2uz+14(u2a2l2a2+u2)=0p,q=12(uala2+u2)

Commented by mr W last updated on 21/Jan/22

Commented by mr W last updated on 21/Jan/22

Commented by ajfour last updated on 21/Jan/22

great workings sir, i will try n  follow..

greatworkingssir,iwilltrynfollow..

Commented by Tawa11 last updated on 21/Jan/22

Weldone sir

Weldonesir

Answered by ajfour last updated on 23/Jan/22

S(h,k)  ((q−h)/(k−(q^2 /a)))=((2p)/a)   ⇒  ak−q^2 =(a^2 /2)(((q−h)/p))    ((p−h)/(k−(p^2 /a)))=((2q)/a)  ⇒  ak−p^2 =(a^2 /2)(((p−h)/q))  subtracting  ⇒ q^2 −p^2 =(a^2 /2)((p/q)−(q/p))+((a^2 h)/2)((1/p)−(1/q))  ⇒  q+p=((a^2 h)/(2pq))−((a^2 (q+p))/(2pq))  ⇒   q+p=((a^2 h)/(a^2 +2pq))  say  q+p=s,   pq=m    ⇒   s=((a^2 h)/(a^2 +2m))    ...(i)    Adding  2ak−(p^2 +q^2 )=(a^2 /2)((p/q)+(q/p))−((a^2 h)/2)((1/p)+(1/q))  ⇒  2ak−s^2 +2m=(a^2 /2)(((s^2 −2m)/m)−((hs)/m))     .....(ii)  And   s^2 +((s^2 (s^2 −4m))/a^2 )=L^2    ...(iii)  ⇒  using (i) and (iii)  1+((s^2 −4m)/a^2 )=(L^2 /h^2 )(1+(m/a^2 ))  ⇒  m((L^2 /(a^2 h^2 ))+(4/a^2 ))=1−(L^2 /h^2 )  ⇒  m=((a^2 (1−(L^2 /h^2 )))/((4+(L^2 /h^2 ))))     (1/s)=(1/h)+((2m)/(a^2 h))=(1/h)+(2/h)(((1−(L^2 /h^2 ))/(4+(L^2 /h^2 ))))  Now  substituting for m, s in (ii)  ((2ak)/s^2 )+1+((2m)/s^2 )=(a^2 /2)((1/m)−(2/s^2 )−(h/(ms)))  {2ak+2a^2 (((h^2 −L^2 )/(4h^2 +L^2 )))+a^2 }{(1/h)+(2/h)(((h^2 −L^2 )/(4h^2 +L^2 )))}^2          +2 =0  And to make it compact  say  (h/L)=X , (k/L)=Y  ((2a)/L)(Y+((X^2 −1)/(4X^2 +1))+(a/L)){1+2(((X^2 −1)/(4X^2 +1)))}^2              +2X^2 =0  or simply    (X/(((1/2)+((X^2 −1)/(4X^2 +1)))))=±(((2a)/L))^(1/2) (√(((1−X^2 )/(4X^2 +1))−Y−(a/L)))  say   for  a=1, L=2   (x/({1+((x^2 −4)/(2(x^2 +1)))}))=±(√(((4−x^2 )/(4(x^2 +1)))−(y/2)−(1/2)))  ⇒  y=((4−x^2 )/(2(x^2 +1)))−((16(x^2 +1)^2 )/((3x^2 −2)^2 ))−1

S(h,k)qhkq2a=2paakq2=a22(qhp)phkp2a=2qaakp2=a22(phq)subtractingq2p2=a22(pqqp)+a2h2(1p1q)q+p=a2h2pqa2(q+p)2pqq+p=a2ha2+2pqsayq+p=s,pq=ms=a2ha2+2m...(i)Adding2ak(p2+q2)=a22(pq+qp)a2h2(1p+1q)2aks2+2m=a22(s22mmhsm).....(ii)Ands2+s2(s24m)a2=L2...(iii)using(i)and(iii)1+s24ma2=L2h2(1+ma2)m(L2a2h2+4a2)=1L2h2m=a2(1L2h2)(4+L2h2)1s=1h+2ma2h=1h+2h(1L2h24+L2h2)Nowsubstitutingform,sin(ii)2aks2+1+2ms2=a22(1m2s2hms){2ak+2a2(h2L24h2+L2)+a2}{1h+2h(h2L24h2+L2)}2+2=0AndtomakeitcompactsayhL=X,kL=Y2aL(Y+X214X2+1+aL){1+2(X214X2+1)}2+2X2=0orsimplyX(12+X214X2+1)=±(2aL)1/21X24X2+1YaLsayfora=1,L=2x{1+x242(x2+1)}=±4x24(x2+1)y212y=4x22(x2+1)16(x2+1)2(3x22)21

Commented by ajfour last updated on 23/Jan/22

some little error ...i shall edit  today..

somelittleerror...ishalledittoday..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com