Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 164945 by mnjuly1970 last updated on 23/Jan/22

    If    { ((  sin ( 3θ ) + cos ( 3θ ) = x)),((     sin( θ ) + cos (θ ) = y)) :}          then  , find  a relationship           between   x  ,  y             indepentent of ,   θ .

If{sin(3θ)+cos(3θ)=xsin(θ)+cos(θ)=ythen,findarelationshipbetweenx,yindepententof,θ.

Answered by mr W last updated on 23/Jan/22

y^2 =1+2 sin θ cos θ  ⇒sin θ cos θ=((y^2 −1)/2)  (sin θ−cos θ)^2 =1−2 sin θ cos ρ=2−y^2   sin θ−cos θ=±(√(2−y^2 ))  x=sin (3θ)+cos (3θ)  =3 sin θ−4 sin^3  θ+4 cos^3  θ−3 cos θ  =3 (sin θ−cos θ)−4(sin^3  θ−cos^3  θ)  =3 (sin θ−cos θ)−4(sin θ−cos θ)(sin^2  θ+cos^2  θ+sin θ cos θ)  =3 (sin θ−cos θ)−4(sin θ−cos θ)(1+sin θ cos θ)  =−(sin θ−cos θ)(1+4sin θ cos θ)  =±(√(2−y^2 ))(1+2(y^2 −1))  =±(√(2−y^2 ))(2y^2 −1)  ⇒x=±(√(2−y^2 ))(2y^2 −1)

y2=1+2sinθcosθsinθcosθ=y212(sinθcosθ)2=12sinθcosρ=2y2sinθcosθ=±2y2x=sin(3θ)+cos(3θ)=3sinθ4sin3θ+4cos3θ3cosθ=3(sinθcosθ)4(sin3θcos3θ)=3(sinθcosθ)4(sinθcosθ)(sin2θ+cos2θ+sinθcosθ)=3(sinθcosθ)4(sinθcosθ)(1+sinθcosθ)=(sinθcosθ)(1+4sinθcosθ)=±2y2(1+2(y21))=±2y2(2y21)x=±2y2(2y21)

Commented by mnjuly1970 last updated on 23/Jan/22

   thanks alot sir W ...grateful

thanksalotsirW...grateful

Commented by Tawa11 last updated on 23/Jan/22

Weldone sir

Weldonesir

Answered by TheSupreme last updated on 24/Jan/22

sin(θ+(π/4))=(y/( (√2)))  sin(3θ+(π/4))=(x/( (√2)))  θ=arcsin((y/( (√2))))−(π/4)  3θ=arcsin((x/( (√2))))−(π/4)  arcsin((y/( (√2))))=(1/3)arcsin((x/( (√2))))  y=(√2)sin((1/3)arcsin((x/( (√(20))))))

sin(θ+π4)=y2sin(3θ+π4)=x2θ=arcsin(y2)π43θ=arcsin(x2)π4arcsin(y2)=13arcsin(x2)y=2sin(13arcsin(x20))

Commented by mnjuly1970 last updated on 24/Jan/22

   mercey sir ...

merceysir...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com